Anticollision and Risk Management Offshore Qatar: A Successful Collaboration

IPTC -131422 - PP

Simon McCulloch, SPE, Maersk Oil Qatar. Benny Poedjono, Erhan Isevcan, John Walker, SPE, Schlumberger

<u>Schlumberger</u>

Factors Driving Anticollision Development

- More complex drilling programs
- Densely populated subsurface environments
- Missing or inaccurate legacy data
- High cost of catastrophic failure

Typical Subsurface Environments

The Challenge of Collaboration

No industry-wide anticollision standard **Different standards define risk differently** Differ in methods for evaluating/reducing risk Differ in amount of risk deemed acceptable A hybrid approach requires Careful planning Integration/bridging of methodologies Effective communication - Team work

Operator's Drilling Environments

- Wells drilled in close proximity
- 20-in conductors, vertical and deviated
- Uncontrolled conductor direction/inclination
- Risk of tophole collisions increased

Challenges

- Different directional databases
- Different anticollision procedures and error models

Different databases, software

- Contractor proprietary software
- Operator commercial software

Advantage in catching potential errors

- Incorrect survey entered
- Missing survey
- Incorrect sidetrack point
- Incorrect rotary table elevation
- Incorrect survey tool model assigned

Resolving Differences in Anticollision Standards

- Extensive pre-job planning to identify potential issues
- Established plan to meet both companies' standards
- Followed both company and operator's rules for exemptions
- Independent calculations performed throughout execution
- No actions that would pose HSE risks

Operator 's Minimum Acceptable Clearance (MAC)

 Results are less conservative than company's OSF

$MAC = E_R + E_O + R_O + R_c$

Where:

- E_R = Projection of the Error Ellipse (subject well) on line of closest approach
- E_o = Projection of the Error Ellipse (offset well) on to the line of closest approach
- R_o = Bit radius (reference well)
- R_c = Casing radius (offset well)
- X = Additional clearance beyond MAC

MAC factor = (MAC + X) / MAC = (MAC + X) / ($E_R + E_O + R_b + R_c$)

Company's Oriented Safety Factor (OSF)

OSF	Probability
2.0	750,599,937,895,083
1.5	660,669,956
1.2	954,910
1.1	146,076
1.0	25,959
0.8	669
0.5	42
0.3	9

Comparison of Methods											
	Operator Procedure	Contractor Procedure									
Separation factor	Minimum Acceptable Clearance (MAC) Factor	Oriented Separation Factor (OSF)									
Minimum separation	$= E_{R} + E_{O} + R_{b} + R_{c}$	Minimum Allowable Separation (MAS) at OSF = 1.5									
Drill ahead with precautions	1.5> Factor>1.25	1.5>OSF>1.0 (Exemption required as per contractor standard									
Drill ahead	Factor>1.5	OSF>1.5									
Tool error model	ISCWSA 20 74% confidence level (3D)	ISCWSA 2.790 95% confidence level (3D)									

Well Planning Process

Traveling Cylinder Plot

Well Design Phase

Hazard and Risk Control

Prespud Meeting

- Held prior to commencement of drilling
- Includes discussion of:
 - Well objectives
 - Well plan
 - Anticollision issues

- Preventive and Mitigation actions

17

Schlumberger	Management of Change Request
Request Date:May 03, 2009 17:58 (UTC)	Management of Change Number: 29090503175845 (1121-561)
Driginator: Isevcan Erhan Requestor: Isevcan Erhan DRM Client: MAERSK OL, QATAR AS Last Updated On :May 03, 2009 21 14 (UTC) by Merad Mohamed Location: D&M Gatar	STATUS: Approved Final Approver: Merad Mohamed Next Approver: Merad Mohamed Expert Approvers:Walker John Classification: QHSE
	Risk Classification
Potential Likelihood:MeSum Potential Severity: Catastrophic Potential Risk: High	Residual Likelihood:Medium Residual Sevently: Light Residual Risk: Low
Approved Management of Change Period: May 03, 2009 00:00 to	May 04, 2009 00:00
	Request Details
Requested Management of Change Period5tay 03, 2009 00:00 to May 0	4, 2009 00:00
Ranagement of Change related to which contractual terms and condi D&M Standard 002	ions, work-scope, historical norms, procedures, work instructions?
Aanagement of Change requested from what exact section and text o Well to well Anti-Collision Viel Name 10A-10 tob No 00G/IS0040	f the contractual terms and conditions, work-scope, historical norms, procedures, work instructions?
Summary of Situation (include the description of the additional increas taks caused by the deviation? Peviation from plan resulted of having oriented seperation factor + 1.5 ar Dipeded CHCT with DA-12 will go down to 1.2 ft at 820ft DA-12 is expected to shufin.	
tak Reduction/Minimization Plan - Prevention Measures Contact to Maersk dilling superintendent and drilling engineer Exemption, Quest #20090430093058 Take a survey every 30t with gMND with the conductor shoe with 1st ol Take a survey every 30t with gMND with the 2nd pendulum BHA, where	
Project ahead to bit, 30tt, 100tt and 200tt, Use the up to date elocitonic TIC plot. Have OSC calculate MAC for survey and projections and compare the vi MOQ surveying specialist to monitor the well in Real Time. Use 'MOQISLB A/C chart Communicate with FSMI/OSC and SLB Drilling Engineer FSM and DE to communicate Maersk Survey Specialist & DE	lues with MOQ
Dnilling Parameters: RPM 40 VOB -Sk-lbf VVE 1000gpm	

Gyro survey of subject well conductor emailed to:

- Operator's
 - Drilling superintendent
 - Drilling Engineer
 - Survey specialist
- Contractor's
 - Drilling service manager
 - Drilling engineer
 - Survey specialist
 - OSC personnel

MAC factor calculations sent from OSC to Operator:

	Survey Remarks				DA-10 MAC Calculation 16" Section																						
4D Br	ic .	Arm		DA-02				DA-05	0A-05		DA 05A		DA 06		DA-11		DA-12A		DA-128		DA-12E		DA-13		DA-13A		S
8 24		1		aa	MAC	CLCI.	MAC	CLCI	MAC	0.0	MAC	aa	MAC	a.a	MAC	aa	MAC	a.a	MAC	aa	MAC	CLCI	MAC	CLCI	MAC	CI-CI	MAC
00.00	.11	322.68	Gyro Survey																								
25.00 0.	.10	160.22	Gyro Survey	1														1									
150.00 0.	40	130.29	Gyro Survey										_														
75.00 0.	.73	123.15	Gyro Survey																								
00.00 1.	.22	118.69	Gyre Survey																								
125.00 1	.65	120.11	Gyre Survey																								
150.00 2.	.03	121.96	Gyro Survey																								
175.00 2	.13	117.84	Gyro Survey																								
00.00 2	.09	109.67	Gyro Survey																								
25.00 2	.03	99.55	Gyro Survey															1									
50.00 1	.91	93.52	Gyro Survey																								
85.00 1	.04	108.13	Gyto Survey																								
01.00 0.	.90	117.34	GMWD Survey																								
37.00 0.	.51	172.93	GMWD Survey																								
62.00 0.	.52	170.73	GMWD Survey																								
73.00 0.	.52	210.02	GMWD Survey	3.82	1.528	6.72	2.541				-			3.36	1.384	2.72	1.062	2.72	1.062	2.72	1.062	5 200	2.025	6.210	2.587	10.590	4.455
08.00 0.80	.34	134.61	GMWD Survey	4.01	1.506	6.63	2.399							3.46	1.335	2.24	0.013	2.24	0.010	2.24	0.013	5.070	1.838	6.160	2.381	10.610	4.144
37.00 0.	.43	152.54	GMWD Servey	4.32	1.542	7.12	2.357							3.70	1.349	1.74	D SEA	1.74	1.004	1.74	0.544	4.890	1.669	5.040	2.204	10.550	3 890
76.00 1.	1051511	UNIALA	PPROACH													10	14.229	1.00	11.221	1.75	0.227						
37.00 0	.40	152.00	Proj	7.49	2.232	10.92	2.983				_			5.08	1.587	1.94	3.545	1.94	1.545	1.94	0.545	4 070	1.142	5 300	1.604	10.290	3.151

Operation Support Center

Appreciates your co-operation, determination & commitment to help us improve our service quality

Office: +974 4698630 Mobile: +974 554049

- Contractor DSM confirms drill-ahead decision
- Failing confirmation:
 - Additional meetings may be planned to analyze options
 - Agreement is reached on prevention/mitigation strategies
 - Well is re-planned to minimize well collision risk

Preventive Actions While Drilling:

- Monitor indications such as high/erratic torque, ROP change, bit vibration, etc.
- Monitor object well at wellhead for indications of bit in contact with casing.
- Monitor returns for cement.
- Install magnet in flow line to monitor for metal cuttings/shows.
- Check MWD surveys for magnetic interference.
- Take survey when bit \leq 5 ft from critical point.

When to shut in wells:

- Critical offsets shut in as specified by drilling program.
- Additional wells shut in, bled off, when:
 - Deviation results in MAC factor < 1.25 (actual or projected)
- Drilling ceases, object well plugged back, when:
 - Object well falls within MAC factor < 1.0 toward any well

Post-Drilling Evaluation

Key personnel meet to:

- Identify problem areas
- Identify good practices
- Document and share lessons learned

Conclusion

Keys to success:

- Comprehensive planning
- Good communication strategy
- Multidisciplinary collaboration

Conclusion

Advantages of an Industry-wide Standard

- Enhanced interoperability among project participants
- Reduction of risks due to:
 - Miscommunication
 - Different terminologies
 - Different methods of calculating risk

Anticollision and Risk Management Offshore Qatar: A Successful Collaboration

IPTC -131422 - PP

Simon McCulloch, SPE, Maersk Oil Qatar. Benny Poedjono, Erhan Isevcan, John Walker, SPE, Schlumberger

<u>Schlumberger</u>