

Applied geoscience for our changing Earth

Estimating the geomagnetic field as a reference for wellbore surveys: accounting for all sources and uncertainties

Ellen Clarke

© NERC All rights reserved

32nd ISCWSA Meeting, Florence, 23rd September 2010

The Earth's magnetic field

© NERC All rights reserv

The Earth's magnetic field

- Most of the field is from the Earth's core
 - varies slowly with time (months to years)

- Local fields from magnetized rocks in Earth's crust
 - relatively stable with time

- Fields due to currents in the ionosphere and the magnetosphere
 - variations from seconds to years

Geomagnetic field sources ...

... and how they are measured

Directional reference and uncertainty

Reference direction for drilling $\rightarrow D + \epsilon$

1. Ideally, account for all sources

$$D_1 = D_{core} + D_{crust} + D_{external}$$

 $\varepsilon_1 = \varepsilon_{core} + \varepsilon_{crust} + \varepsilon_{external}$

2. When external fields are ignored

$$D_2 = D_{core} + D_{crust} + 0$$

 $\varepsilon_2 = \varepsilon_{core} + \varepsilon_{crust} + D_{external}$

3. When crustal and external fields are ignored

$$D_3 = D_{core} + 0 + 0$$

 $\varepsilon_3 = \varepsilon_{core} + D_{crust} + D_{external}$

Confidence levels

• Error distributions are not usually normal

- Should not use multiples of σ and assume same confidence as with a normal distribution
- Confidence levels relevant for any error distribution
- Uncertainties presented as limits for confidence levels...
 - 68.3% (equivalent to 1σ if normal)
 - 95.4% (equivalent to 2σ if normal)
 - 99.7% (equivalent to 3σ if normal)

Directional reference and uncertainty

$$D_3 = D_{core} + 0 + 0$$

 $\varepsilon_3 = \varepsilon_{core} + D_{crust} + D_{external}$

32nd ISCWSA Meeting, Florence, 23rd September 2010

celebratin

Global magnetic field models

- Spherical harmonic model of the core field and the long wavelength crustal field
- Uses selected satellite and ground based observatory data
- Prediction into future

Global field model uncertainties

95.4% confidence limits

Varies with geomagnetic

- latitude; and
- activity levels

From Macmillan and Grindrod, 2010 (SPE paper 119851)

celebratin

275

260

245

230

Directional reference and uncertainty

2. When external fields are ignored

Methods to determine the crustal field

There are three main methods

- Direct measurements of the vector field
- Physical modelling of the magnetic sources
- Transformation of scalar data that exploits the physical properties of magnetic data at or near Earth's surface

Direct measurements

32nd ISCWSA Meeti

Instruments:

Vector and scalar magnetometers Ring-laser gyro and GPS

Solving for sources

•Assume magnetisation induced by main field

•Assume magnetisation does not vary with depth

Seismically-determined depth to magnetic basement

ing, Florence, 23rd September 2010

Vector from scalar

Assume data collected in source-free region
Assume constant main field over the area

© NERC All rights reserved

External fields: 'regular' disturbances

32nd ISCWSA Meeting, Florence, 23rd September 2010

years

External fields: irregular disturbances

Solar wind speed 300 to 1000 km/s (1 - 4 days to travel to the Earth)

© NERC All rights reserved

External fields: irregular disturbances

© NERC All rights reserved

Geomagnetic Observatories

... due to signal from external fields

variations by **year** (at Lerwick)

... due to signal from external fields

variations by <u>hour</u> (at Lerwick)

... due to signal from external fields

variations by <u>month</u> (at Lerwick)

Directional reference and uncertainty

1. Ideally, account for all sources

$$D_1 = D_{core} + D_{crust} + D_{external}$$

 $\varepsilon_1 = \varepsilon_{core} + \varepsilon_{crust} + \varepsilon_{external}$

Estimating the external field at the drill site

- Use data from nearby magnetic observatories (and/or calibrated variometer stations)
 - can use one or more
- Take advantage of observatory quality control, quasi-definitive data and realtime operations
- Use the real observatories to create a 'virtual' observatory at the drilling location

Liverpool Bay experiment 1994-95

External field uncertainty revisited 2005

TGO (Norway) observatory & variometer stations

GFZ (Germany) observatory

DMI (Denmark) observatory & variometer station

SAMNET (UK) variometer stations

32nd

BGS (UK) observatories

External field uncertainties (*c*_{external}) around the North Sea

32nd ISCWSA Meeting, Florence, 23rd September 2010

years

Directional reference and uncertainty

1. Ideally, account for all sources

$$D_1 = D_{core} + D_{crust} + D_{external}$$

 $\varepsilon_1 = \varepsilon_{core} + \varepsilon_{crust} + \varepsilon_{external}$

32nd ISCWSA Meeting, Florence, 23rd September 2010

celebrating

Summary and Conclusions

• Providing a single answer on the uncertainty associated with the geomagnetic reference field is hard.

 The uncertainty associated with a particular reference value, depends on what sources are included in the estimate; location on the earth's surface; and often on time of day, season and solar cycle

 Including all sources will reduce the uncertainties; and importantly, provide a more robust estimate of the uncertainties by removing any hourly, seasonal and solar cycle variations

External field sources

- Ionospheric currents
 from about 100 km altitude
- Magnetospheric currents
 out to several Earth radii
- Secondary currents induced in the earth

External fields: long-term trends

Sunspot Cycle and Annual Number of Magnetic Storms

