Anti-Collision Best Practices Developed for Horizontal Drilling Across Preexisting Horizontal Wellbores

Erin Britton & Rachel Grande



Erin Britton, Sr. Drilling Engineer
Petroleum engineer with over 9 years energy industry experience
specializing in drilling engineering with a focus in project management.
Holds a B.S. in Petroleum Engineering from the University of Oklahoma and
a Masters of Energy Business from the University of Tulsa. Experience
across multiple basins & plays including extended reach and multilateral
drilling projects.

Rachel Grande, Sr. Geologist

Geologist with over 9 years energy industry experience specializing in operational geology and field development. Holds a B.S. in Geological Sciences from Ball State University. Experience in multiple basins & plays including Bakken, Powder River, and Eagle Ford.



Anti-Collision Best Practices presented by Erin Britton and Rachel Grande





#### Overview

- Current Anti-Collision Practices
- Williston Basin Overview
- Geologic Considerations and Planning
- Risk Management
- Drilling Considerations
- Stoplight Method
- Case Studies
- Conclusion



# Anti-Collision Industry View

# Standard view errs towards avoidance mentality:

- Total Avoidance
- Azm. Avoidance

Limited support and documentation for alternative processes when avoidance is not an option.

Anti-Collision Best Practices presented by Erin Britton and Rachel Grande







# **Anti-Collision Case Study**

Williston Basin

- 13,000 vertical wells,
- 15,000 horizontal wells,
- 1,000 re-entry/directional wells.

Developed for horizontal drilling across pre-existing horizontal wellbores in the Williston Basin.

Drilled as close as 10 feet wellbore - wellbore







Anti-Collision Best Practices<sup>6</sup> presented by Erin Britton and Rachel Grande



45 Miles



Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

#### Geologic Considerations Anti-Collision Program Constraints

- Laterally Continuous Formation
- Well Control
- Quality Data
- Clear Steering Markers
  - Gamma
  - Resistivity

Anti-Collision Best Practices<sup>7</sup> presented by Erin Britton and Rachel Grande





### Geologic Planning Anti-Collision Methodology

- Reinterpretation
  - \* Profiles
  - \* Structure
- Organization of Stratigraphic position
- Wellbore Placement
- Target Selection

Anti-Collision Best Practices<sup>8</sup> presented by Erin Britton and Rachel Grande





### **Drilling Considerations** Risk Management Program

Anti-Collision Best Practices<sup>9</sup> presented by Erin Britton and Rachel Grande

#### Potential Risks

Impact vs. Probability

#### Common Indicators

- **Operational Parameters**
- Geologic
- Directional/Survey Survey Error Ellipse of Uncertainty

# Risk Matrix

|            |               | Negligible | Minor   | Moderate | Significant | Severe |
|------------|---------------|------------|---------|----------|-------------|--------|
| Likelihood | Very Likely   | Low Med    | Medium  | Med Hi   | High        | High   |
|            | Likely        | Low        | Low Med | Medium   | Med Hi      | High   |
|            | Possible      | Low        | Low Med | Medium   | Med Hi      | Med Hi |
|            | Unlikely      | Low        | Low Med | Low Med  | Medium      | Med Hi |
|            | Very Unlikely | Low        | Low     | Low Med  | Medium      | Medium |



# Drilling Uncertainty Ellipsoids of Uncertainty

# Major Concern Affecting Anti-Collision Planning

Survey Error: MWD Error and interference concerns.

**Azimuth Uncertainty** 

**Inclination Uncertainty** 

Surface Location Uncertainty

• Ellipse of Uncertainty: Expanding ellipse from surface onwards.

Anti-Collision Best Practices presented by Erin Britton and Rachel Grande



Netwas Group Oil, 2017



Anti-Collision Best Practices<sup>11</sup> presented by Erin Britton and Rachel Grande

# Mitigating Risk & Accounting for Error Risk Management Meets Geology

Ability to simplify risk with the combination of drilling & geologic considerations.

- Expected Structure
- Apparent Dip
- Distinct Stratigraphic Markers

Confirmation of "Y" or TVD direction

# Ellipse of uncertainty becomes plane of uncertainty with no expansion in the Y direction.



#### Stoplight Method A Disciplined Approach

#### Multidisciplinary approach using:

- Geologic Considerations
- Operations Best Practices
- Risk Management

Geologic overlapping target windows by color zone implemented across the planned wellbore based on the risk management plan considerations. Anti-Collision Best Practices<sup>12</sup> presented by Erin Britton and Rachel Grande



- Existing Wellbore Stratigraphic Placement
  - Red : High Risk
  - Orange: Med. Risk
  - Yellow: Low Risk
  - Green: No Risk



#### Stoplight Method Risk Parameters

#### Red: High Risk

- Controlled Operations & "high alert" communication
- Precise Steering target required

#### Orange: Medium Risk

- Controlled operations and heighted communication procedures
- Overlap zone for steering adjustments

#### Yellow: Low Risk

- Standard operations & communication procedures
- Begin steering considerations

Green: No/Low Risk

Anti-Collision Best Practices<sup>13</sup> presented by Erin Britton and Rachel Grande



### Case Study A Stoplight Method

Anti-Collision Best Practices<sup>14</sup> presented by Erin Britton and Rachel Grande



Drilled 32' above existing wellbore.



### Case Study B Stoplight Method



Anti-Collision Best Practices<sup>15</sup> presented by Erin Britton and Rachel Grande

#### Drilled across 3 existing laterals.

- Drilled 26' below wellbore #1.
- Drilled <u>34' below</u> wellbore #2.
- Drilled <u>8' below</u> wellbore #3.



### Case Study C Stoplight Method



Anti-Collision Best Practices<sup>16</sup> presented by Erin Britton and Rachel Grande

Drilled across 3 existing laterals.

- Drilled 20' below wellbore #1.
- Drilled 36' below wellbore #2.
- Drilled <u>15' below</u> wellbore #3.



48' Total Thickness



Anti-Collision Best Practices<sup>17</sup> presented by Erin Britton and Rachel Grande

Mature Basin Development requires industry progression towards complex wellbore trajectories with significant collision concerns.

Williston Basin anti-collision wells historical percent:

- 2010 ~ < 0.1%
- 2016 ~ 4.25%





# Conclusions Industry Advancement

The progression towards increasingly complex wellbores requires Industry advancements in anti-collision practices and theories outside of avoidance mentality.

- Proactive approach to development for infill wells.
- Inclusive geological and engineering considerations.

The Stoplight Methodology simplifies complex multidisciplinary considerations including hazards and stringent operational requirements into easily recognizable plan.

Green = Go, Red = Stop



Anti-Collision Best Practices 19 presented by Erin Britton and Rachel Grande

#### Thank You

The methodology and subsequent case studies were performed as part of the operational program at Liberty Resources, LLC.

We would like to thank Liberty Resources, LLC for their continued support.

