

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Directional Survey Comparison and Data Science

Jerry Codling – Halliburton Landmark

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Introduction

- Survey comparison of two independent surveys over the same hole interval
 - To evaluate quantitively whether the 2 instruments perform within expectation
 - RIP test: Relative instrument performance
 - Compares sampled inclination and azimuth differences at interpolated depths to the expected relative inclination and azimuth error generates a numerical result for mean and standard deviation
- Problem: Random errors affect single station comparisons but less effect on overall position error.
 - In inclination comparisons the low angle misalignment of 3° is dominant at higher angles leading to poor RIP test results
 - Current high angle misalignment (0.1° systematic) is systematic and does not encourage refinement of SAG corrections & smaller residual errors. Also not much evidence here.
- Data Analysis
 - Look at inclination and azimuth error differences for 3 hole sizes at high angles for a set of wells.
 - Evaluate the behaviour of random misalignment at higher angles, look at DLS effects

⊴⊆⊆∭⊆₽⊳

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

3

Wellbore Positioning Technical Section

Example of Relative Instrument Performance for azimuth differences

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Survey Analysis

- 8 1/2 MWD vs
- DP Gyro 10'
- Interpolated 100' intervals
- Mean = systematic error
- Std.Dev = random error

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

AZI 0.8 0.6 . 0.3 -0.2 -0.4 -0.6 -0.8 0.5 Ω -0.5 -1 -1.5 -2 1.5 1 0.5 5

Azimuth Differences – not reliable

⊴⊆<u>с</u>∭⊆₽≫

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Comparison Data – Inclination Error Delta for 3 Hole sizes

⊴⊆ГШ⊆₽≫

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Wellbore Positioning Technical Section

8 ¹/₂" Hole Gyro vs MWD – High Angle

• 2000' samples, Mean & SD

Gyro Positioning, 10' stations

8 ¹⁄₂" Hole Pipe 5 ¹⁄₂" Instrument Tool Joint

MWD Positioning, 90' stations

8 ½" Hole Collar 6 ½" Instrument Stabilizers

 Observations: Strong DLS effect = XCL, Residual error of 0.1° random

Wellbore Positioning Technical Section

DLS DEG/100

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

DP Gyro vs 16" & 12 ¹/₄" MWD Delta Inclination vs Dogleg Severity

1000' samples . 0.9 0.9 Gyro Positioning, 16" Hole 0.8 0.8 13 3/8" casing 0.7 0.7 + 9 5/8" casing Pipe 5 1/2" Instrument **Tool Joint** 16" Hole = 0.25° MWD Positioning, 90' stations 16" Hole 0.3 0.3 Collar 9 1/2" 0.2 0.2 Instrument 0.1 0.1 Stabilizers 0 5 0 20

Inclination Differences vs Average Inclination

Inclination (deg)

Observations: More casings remove relative XCL effect

8

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Low angle Misalignment: Vertical Well Separations

SPE-187073, The Effect of Survey Station Interval on Wellbore Position Accuracy

Wellbore Positioning Technical Section

⊴⊆⊆∭⊆₽⋗

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Old vs. New Misalignment

- Low angle misalignment is weighted differently is like reverse SAG or "floppy BHA" behavior
- High angle misalignment becomes 0.08° and applies at all angles – like roll test values
- ISCWSA rev 0 (SPE67616) is valid except using random not tool face. Weighting is different to in SPE90408

COMPASS IPM Format

Old Mis	alignme	ent Re	v 5		New Misalignment Rev ?								
Name	Vec	Prop	Unit	Value	Weight	Name	Vec	Prop	Unit	Value	Weight		
w_12	n	n	-	1	sin(inc)	w_12	n	n	-	1	1.0		High angle
w_34	n	n	-	1	sqrt(1-(w	w_34	n	n	-	1	1-(sin(inc))^0.25	Low angle
xym1	i	s	d	0.1	w_12	xymr1	i	r	d	0.08	w_12		High angle
xym2	1	s	d	0.1	w_12	xymr2	1.0	r	d	0.08	w_12		
xymr3	i	r	d	0.3	cos(azi)*v	xymr3	i	r	d	0.3	cos(azi)*v	v_34	Low angle
xymr3	1	r	d	0.3	-sin(azi)*	xymr3	1	r	d	0.3	-sin(azi)*	w_34	
xymr4	i	r	d	0.3	sin(azi)*w	xymr4	i	r	d	0.3	sin(azi)*w	/_12	
xymr4	1	r	d	0.3	cos(azi)*v	xymr4	1	r	d	0.3	cos(azi)*v	v_12	
sage	i	s	d	0.2	(sin(inc))	sage	i	s	d	0.2	(sin(inc))	0.25	SAG Error

New: Total Misalignment 0.3 low and 0.1 high

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Conclusions

- Data suggests that low angle misalignment declines rapidly and high angle misalignment is consistent across all angles, there is a DLS effect
- Change means that inclination comparisons in RIP tests are more reliable.
- High angle misalignment and XCL mean that advanced SAG corrections show more value in vertical wellbore positioning accuracy.
- Hole geometry (sizes and casings) are not considered in the error model because of complexity.
- Low angle misalignment (RMIS) can be ignored when comparing surveys in the same hole/casing. High angle misalignment is valid.

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Thanks.....Questions?

RIP Test Example

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

RIP Test with Bias

