Real-Time Wellbore Placement Improvement with High-Fidelity Trajectory Estimation and Dual-Sensor MWD Packages

David Gutierrez, Superior QC
Nate Anderson, Noralis
Chad Hanak, Superior QC
Tim Paton, Superior QC
Agenda

• The Challenge to the Industry
• Dual-Sensor Packaging
• Navigation vs. Sensing
• High-Fidelity Trajectory Estimation
• Dual-Sensors with High-Fidelity Trajectory Estimation
• Lab Testing / Field Trial Methodology & Results
The Industry Challenge

In Both Cases, Minimum Curvature Gets it Wrong!
How Do We Fix this?

• Take more Surveys!

• Change How We Drill!

• Change Minimum Curvature!

• Do Nothing
Economic Challenge of Taking More Surveys

Most Drilling Operations Survey every 90 ft. (30 meters)
Lines up with pipe connections. (Survey on Connection).

1. Stop Drilling. Shut off Pumps
2. Sit Still (30-45 seconds)
3. Turn Pumps On
4. Detection (2-5 minutes)
54th General Meeting
6 & 7 of October 2021
Virtual Conference

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Dual-Sensor MWD Tool

Batteries
Sensor #1
Transmitter

Downhole

Send two sets of survey data each PUMPS OFF cycle at the same time

120 Meters
150 Meters
180 Meters
210 Meters

120 Meters
150 Meters
180 Meters
210 Meters
115 Meters
145 Meters
175 Meters
205 Meters

It’s a Data Challenge!
Direct API Connections Fix It!
Sensing Vs. Navigation → An Aerospace Application Analogy
Variables to Consider in High-Fidelity Trajectory Estimation

Steering direction of $\Delta MD_1 \neq \Delta MD_2$

$\Delta \text{Inc}_1 \neq \Delta \text{Inc}_2$ over steering events even if $\Delta MD_1 = \Delta MD_2$

Steering event $\Delta MD_1 \neq \Delta MD_2$

Steering event location in relation to the survey is not consistent

Wellbore trajectory is not straight even over non-steering events

A lack of adequate survey density will change the understanding of the wellbore's position
Using Trajectory Waypoints to Capture Wellbore Characteristics

- Trajectory Waypoints are modeled MD, INC, AZI datapoints at 15ft intervals to account for:
 - Steering/Non-Steering Transitions
 - Rotary Tendency Estimations
 - Refined Insights Provided by Continuous Inclination

- Maintain Minimum Curvature as means to calculate well path trajectory
Quantification of Rotary Tendencies & Motor Yield (Single-Sensor)

\[\text{MY} = \left(\frac{1}{SE} \right) \times \left(\frac{l_2 - l_1}{MD_2 - MD_1} \right) \]

\[\text{RBDR} = \frac{l_2 - l_1}{MD_2 - MD_1} \]
Quantification of Rotary Tendencies & Motor Yield (Dual-Sensor)

\[RBDR = \frac{PI_2 - SI_2}{PMD_2 - SMD_2} \]

\[MY = \left(\frac{1}{SE}\right) \times \left(\frac{SI_2 - PI_1 - (RBDR \times \Delta MD_{Rot})}{\Delta MD_{Slide}}\right) \]
Statistical Synthesis of Multiple Measurements

- Primary Sensor Surveys
- Secondary Sensor Surveys
- Primary Sensor Cont. Inc.
- Secondary Sensor Cont. Inc.
- High-Fidelity Trajectory Estimation

Inclination (deg) vs. Measured Depth (ft)
Lab Testing Configuration & Methodology

- Data simulation module for 6-axis dual-sensor configuration
 - Deviated, horizontal well with 10,000ft lateral
 - Simulated at 0°, 45°, 90° vertical section direction
- Random number generator used to inject unknown levels of MWD sensor errors
- Corrupted dataset processed through high-fidelity trajectory estimation algorithm
- Resulting position and uncertainty output compared to the uncorrupted position (true wellbore position)
- The size of the post-fit EOU was compared against the EOU size of the tightest, widely accepted gyroscopic surveying tools in the industry
Lab Testing Results

<table>
<thead>
<tr>
<th>Vertical Section Direction</th>
<th>Lateral Length (ft)</th>
<th>Survey Type</th>
<th>EOU Half-Width Horizontal (ft)**</th>
<th>EOU Half-Width Vertical (ft)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>10,000</td>
<td>Dual-Sensor & High-Fidelity Trajectory Estimation*</td>
<td>108.9</td>
<td>59.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gyro A</td>
<td>129.8</td>
<td>116.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gyro B</td>
<td>60.1</td>
<td>56.7</td>
</tr>
<tr>
<td>45°</td>
<td>10,000</td>
<td>Dual-Sensor & High-Fidelity Trajectory Estimation*</td>
<td>106.4</td>
<td>59.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gyro A</td>
<td>111.2</td>
<td>116.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gyro B</td>
<td>62.1</td>
<td>56.8</td>
</tr>
<tr>
<td>90°</td>
<td>10,000</td>
<td>Dual-Sensor & High-Fidelity Trajectory Estimation*</td>
<td>116.6</td>
<td>60.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gyro A</td>
<td>88.4</td>
<td>116.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gyro B</td>
<td>64.2</td>
<td>56.6</td>
</tr>
</tbody>
</table>

*Including Global Declination Uncertainty (Dual-Sensor & High-Fidelity)

**3-Sigma Values
Field Trial Description & Target Expectations

- 9 Wells (3 Drilling Pads)
- U.S. Land Applications
 - Various oil & gas fields as well as target formations
 - Varying well plan configurations

- Target Expectations Based on Lab Testing
 - 20% EOU reduction in the horizontal (semi-major) plane over MWD+IFR1+SAG+MS
 - 45% EOU reduction in the vertical (semi-minor) plane over MWD+IFR1+SAG+MS

<table>
<thead>
<tr>
<th>Horizontal EOU Reduction vs MWD+IFR1+SAG+MS</th>
<th>Vertical EOU Reduction vs MWD+IFR1+SAG+MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.1%</td>
<td>60.5%</td>
</tr>
</tbody>
</table>

*Including Global Declination Uncertainty

**3-Sigma Values
Field Trial Description & Results

Horizontal EOU Reduction vs MWD+IFR1+SAG+MS

<table>
<thead>
<tr>
<th>Pad</th>
<th>Vertical Section Direction</th>
<th>Avg. Horizontal EOU Reduction vs MWD+IFR1+SAG+MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pad 1</td>
<td>0°</td>
<td>19.5%</td>
</tr>
<tr>
<td>Pad 2</td>
<td>165°</td>
<td>23.4%</td>
</tr>
<tr>
<td>Pad 3</td>
<td>0°</td>
<td>19.4%</td>
</tr>
</tbody>
</table>

Vertical EOU Reduction vs MWD+IFR1+SAG+MS

<table>
<thead>
<tr>
<th>Pad</th>
<th>Vertical Section Direction</th>
<th>Avg. Vertical EOU Reduction vs MWD+IFR1+SAG+MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pad 1</td>
<td>0°</td>
<td>49.8%</td>
</tr>
<tr>
<td>Pad 2</td>
<td>165°</td>
<td>58.2%</td>
</tr>
<tr>
<td>Pad 3</td>
<td>0°</td>
<td>58.3%</td>
</tr>
</tbody>
</table>

Comparison shots between runs omitted on Well 1 & Well 7 which would have likely improved the EOU reduction metrics
Conclusions

• Accurate positioning is paramount to maximizing ROI over the life of the well
 • Economic realities have prevented significant advances in this field in recent decades

• The challenges to reducing positional uncertainty are numerous
 • Tools are now available to overcome these challenges at minimal cost

• Dual-Sensor MWD packages when paired with a High-Fidelity Modeling Algorithm will more accurately represent the wellbore trajectory

• Field trial results indicate substantial positional uncertainty improvement:
 • 21.1% average EOU reduction in the horizontal (semi-major) plane over MWD+IFR1+SAG+MS
 • 56.3% average EOU reduction in the vertical (semi-minor) plane over MWD+IFR1+SAG+MS