

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Downhole Automatic Calibration of Rotary Steerable System for Real-Time Precision Surveying

Makito Katayama, Ross Lowdon, Olga Panova

Andrew Whitmore, Kellen DeVuyst

SLB

61th General Meeting 6th & 7th of March 2025

Stavanger, Norway

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Speaker BIO

- Makito Katayama
- Senior Physicist at SLB for 13 years
- Measurement physics & algorithm development for surveying tools
 - MWD, RSS & Gyroscopic tools

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Rotary Steerable System: PowerDrive

Challenges for surveying

- 1. Survey under dynamic condition (collar rotating) as no battery in the system
 - 1. Eddy current, Dynamic noise.. etc
- 2. Prone to severe magnetic interference (several mechanics/electronics has impact to mag)

Positive features for surveying

 Control unit rotates slow toward geostatic condition (relatively easy to suppress the vibration noise)

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Modeling of Measurement Error and Compensation

Four algorithms to run in downhole

 $\begin{array}{l} \gamma_c : \text{Eddy current coefficient} \\ \omega_c, : \text{Collar Rotation speed} \\ b_x, b_y, b_z : \text{Bias offset of mags} \\ s_x, s_y, s_z : \text{Actuator noise amplitude} \\ \widehat{B_x}, \ \widehat{B_y}, \ \widehat{B_z} : \text{True magnetic field around BHA} \\ B_x, \ B_y, \ B_z : \text{Measured mag by sensor} \end{array}$

US12123297B1 US20240376815A1

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Bias Estimation

61th General Meeting 6th & 7th of March 2025 Stavanger, Norway

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Eddy Current Effect Estimation

- Eddy current model
 - Orthogonal to main field
 - Magnitude is relative to collar RPM

- Angle X vs Collar RPM
 - Angle X changes as collar RPM to change
 - Detect change of collar RPM

- Check window
- Least square to estimate γ

Angle X and eddy current impact

Model

 $X_{\omega_c 1}$ $X_{\omega_c n}$ $= F \begin{pmatrix} \gamma \\ X_0 \end{pmatrix} + w$

Inversion model

Angle X and CRPM relationship

61th General Meeting 6th & 7th of March 2025 Stavanger, Norway

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Simulation Result

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Downhole Processing Field Test

- All processing done in RSS downhole, sending only compensated surveys (used for the statistics analysis)
- Various reference tools (Drop gyro, MWDs)
- Error model: <u>MWD rev5</u>

Run	Reference vs Comparison							
	Chi-Square (Tor: 34.4)			RIP Test				Comp Type
	N	E	TVD	Norm Incl Mean	Norm Incl STD	Norm Azi mean	Norm Azi STD	
#1								Gyro Omega (drop)
#2								Gyro Omega (drop)
#3								Gyro Omega (drop)
#4								DDS
#5								Gyro Omega (drop)
#6								MWD

abs(mean_diff) <= 0.50 : Good agreement	std_diff <= 1.00 : Good agreement
abs(mean_diff) <= 0.75 : Average agreement	<pre>std_diff <= 1.50 : Average agreement</pre>
abs(mean_diff) <= 1.25 : Poor agreement	<pre>std_diff <= 2.00 : Poor agreement</pre>
abs(mean_diff) > 1.25 : Disagreement	std_diff > 2.00: Disagreement

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Survey Limitations

Bias & azimuth accuracy MAP

"Simulated" example at zone of exclusion when <u>forced</u> to update bias

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Conclusion

- Rotary steerable system allows at bit definitive survey
- Bias correction, eddy current correction, actuator noise and random noise suppression are key algorithm components for the autonomous downhole calibration
- Algorithms were implemented to the PowerDrive downhole rotary steerable
- Surveying results from field test were compared with DropGyro or MWD tools, and passed RIP and χ^2 test for MWD rev5 error model
- Survey accuracy limitations were defined, and continue to be explored