

OPERATIONAL WELLBORE SURVEY GROUP

December 04, 2023

Jonathan Lightfoot Sub-Committee Chair

Agenda

- Mission & Anti-Trust
- Brand and Scope
- 2024 Meetings and Events
- Probability of Collision (Mohamed Elshabrawy & Jerry Codling)
- Projection Ahead Case Study (Marc Willerth)
- Unconventional Pad Surface and Intermediate Steering for Safe Separation
- Open Discussion

Mission Statement 2

Attendees on December 4th

- Jonathan Lightfoot Oxy
- 2. Mohamed Elshabrawy Shell
- 3. Todd McKenzie Shell
- 4. Ayush Raj Srivastava ExxonMobil
- 5. Pete Clark Chevron
- 6. Kevin Sutherland Chevron
- 7. Dalis Deliu ConocoPhillips
- 8. Bill Allen bp
- 9. Marianne Houbiers Equinor
- 10. Nicholas Robertson bp
- 11. Hans Dreisig Total

- 1. Adrian Ledroz Gyrodata
- 2. Michael Calkins HilCorp
- 3. Jerry Codling Halliburton Landmark Graphics
- 4. Marc Willerth H&P Technologies
- 5. Jamie Steward Baker Hughes
- Darren Aklestad slb.
- 7. Nasikul Islam Al Driller
- 8. Jon Bang Gyrodata

Title of slide

Our Mission

To promote practices that provide confidence that reported wellbore positions are within their stated uncertainty.

Mission Statement 2

Anti-Trust Statement

We are meeting to help develop and promote good practices in wellbore surveying necessary to support wellbore construction which enhance safety and competition.

The meeting will be conducted in compliance with all laws including the antitrust laws, both state and federal. We will not discuss prices paid to suppliers or charged to customers nor will we endorse or disparage vendors or goods or services, divide markets, or discuss with whom we will or will not do business, nor other specific commercial terms, because these are matters for each company or individual to independently evaluate and determine.

Mission Statement 5

2024 Brand

OWSG: Operational Wellbore Survey Group

Operators, OEMs, Service Partners & Interested Parties

Scope: Case Studies and Operational Practices - Implementation

Schedule: Meetings every other month

OWSG Chair – Jonathan Lightfoot (Position Open)

2024 Meetings

- 1. February 6th
- 2. March 26th
- 3. May 28th
- 4. July 23rd
- 5. September 24th
- 6. November 26th

Meetings

Probability of Collision – Introduction

Collision Avoidance – why?

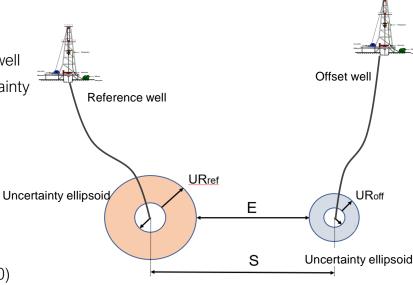
• The consequences of an unplanned intersection with an existing well can range from financial loss, asset damage, to a catastrophic blowout and loss of life. Failure to manage collision risk has led to well control incidents in the industry.

With congested platforms and high density of wells drilled in our assets, especially brown

fields, collision risks are of a great significance.

0005-0005-0006-0006-

Reference: SPE-184730-Well-Collision-Avoidance Management and Principles

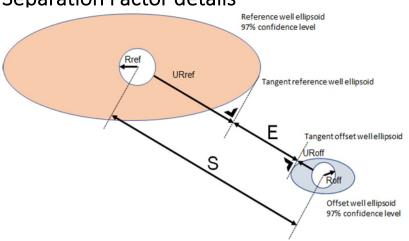

Separation Factor in simple terms

- 1. Determine the distance "S" from the reference well to the offset well
- 2. Determine the minimum distance "E" between the survey uncertainty ellipsoids
- 3. And determine the separation factor or clearance factor

$$SF = S/(S-E)$$

Key facts to know about SF:

- > 1.0 when they have a positive inter-boundary separation (E>0)
- = 1.0 when the ellipses of uncertainty touch (E=0)
- < 1.0 in case of a potential collision, where the ellipses of uncertainty overlap (E<0)



The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

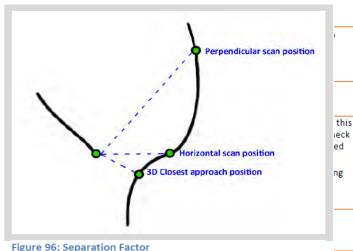
Wellbore Positioning Technical Section

Separation Factor details

5.7.2.3 Separation Factor (SF)

The Separation Factor is given by

 $SF = \frac{1}{3D \text{ distai}}$


The use of Top I take into accour misalignment of An alternative n

 $SF = \frac{1}{3D \text{ distant}}$

This is a not a p

For a more conservative SF:

- 1. 3D scan for min C-C centre in 3D space
- 2. IB separation using Pedal Curve method, tangent to edge of ellipses
- Account for TBR
- 4. Apply 3-sigma confidence level (97%)

2 Sigma = 2 Std Dev Ellipse

3 Sigma = 3 Std Dev Ellipse

ters areas at a shallow well

ISSUED: 1ST OCTOBER 2009
REVIEW: 1ST OCTOBER 2012

PAGE 43 OF 61

PRINTED COPIES ARE UNCONTROLLED

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Introducing probability of collision

20.6.1 Difference between Separation Factor and Probability Based Rules

A separation factor based rule is purely geometric whereas a probability based rule relates to actual risk. For example, take two different uncertainty situations which both calculate a separation factor of 1.0. In the first case two 12-1/4" wellbores have uncertainty envelopes which are hundreds of feet across. In the second case the uncertainty envelopes only have a radius of one foot from each well centre. Clearly the second case has a much higher probability of being an actual collision than the former.

Rules merely using reported separation factor numbers will not distinguish between these two cases.

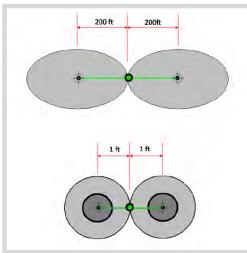
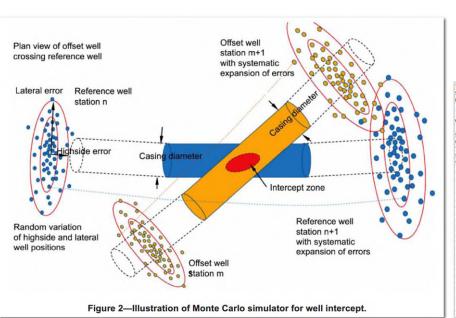


Figure 102: The uncertainty envelopes for two calculation methods

Offset De Survey Prog Refer	ram:	Offs	rt	Semi Major	Axis		Dist	ance					Offset Site Error: Offset Wall Error:	0.00 m
Measured Depth (m)	Vertical Depth (m)	Measured Depth (m)	Vertical Depth (m)	Reference (m)	Offset (m)	Between Centres (m)	Wall-Wall Distance (m)	Between Ellipses (m)	Minimum Separation (m)	Separation Factor	Risked Separation Factor	Probability of Collision	Warning	
425.00	474 94	472.43	472.38	0.88	1.04	3.67	3.00	6.92	7.45	1.063	.0	1 in 401	SURVEY PROJECTION R	ECK HRED
500.00	499.93	497.45	497.40	0.90	1.11	3.82	3.24	0.25	3.57	1.009	0	1 in 416	SURVEY PROJECTION R	EQUIRED
525.00	524.92	522.44	522.39	0.90	1.17	424	3.00	0.56	3.66	1.153	0	1 in 607	SURVEY PROJECTION R	EQUIRED
550.00	549.86	547.30	547.34	0.91	1.23	5.18	4.60	1.39	3.79	1.367	0	1 in 1,533	SURVEY PROJECTION R	EQUIRED
575.00	574.73	572.31	572.25	0.92	1.29	6.86	6.28	2.97	3.89	1.764	0	1 in 7,689	SURVEY PROJECTION R	EQUIRED
600.00	400.61	FINT 11	507.06	0.00	1.34	0.64	0.00	4.05	3.00	5 164	0	1 in 55 438		

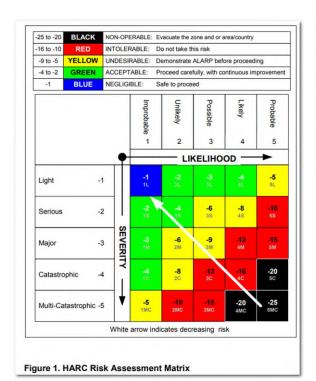

Offset De Survey Prog													Offset Site Error:	0.00 m
survey Prog Refer		OTTE	et	Semi Major	AXIS		Dist	ance					Offset Well Error:	0.00 m
Measured Depth	Vertical Depth	Measured Depth	Vertical Depth	Reference	Offset	Between Centres	Wall-Wall Distance	Between Ellipses	Minimum Separation	Separation Factor	Risked Separation	Probability of Collision	Warning	
(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)		Factor			
625.00	594.67	626.27	594.40	1.32	1.31	59.60	59.26	55.52	4.08	14.625	0	< 1 in 1E+9		
650.00	619.44	651.16	619.17	1.39	1.37	62.15	61.81	57.89		14.568	0	< 1 in 1E+9		
675.00	644.13	675.94	643.82	1.45	1.43	64.93	64.59	60.49	4.44	14.618	0	< 1 In 1E+9		
700.00	668.75	700.62	668.37	1.49	1.50	68.55	68.20	63.96		14.953	0	< 1 In 1E+9		
725.00	693.27	725.56	693.17	1.51	1.56	73.02	72.67	68.32	4.70	15.530	0	< 1 in 1E+9		
750.00	717.65	750.50	717.97	1.53	1.63	78.17	77.83	73.35	4.82	16.204	0	< 1 in 1E+9		
775.00	741.86	774.88	742.21	1.56	1.69	84.13	83.78	79.18		16.991	0	< 1 in 1E+9		
800.00	765.86	798.86	766.04	1.59	1.76	90.96	90.62	85.88		17.892	0	< 1 in 1E+9		
825.00	789.61	822.44	789.47	1.62	1.83	98.70	98.42	93.55		19.160	0	< 1 in 1E+9		
850.00	813.08	845.81	812.70	1.66	1.89	107.36	107.08	102.07		20.323	0	< 1 in 1E+9		
875.00	836.22	868.96	835.74	1.71	1.94	116.88	116.60	111.47	5.41	21.600	0	< 1 in 1E+9		
900.00	859.01	891.84	858.51	1.75	2.00	127.25	126.97	121.71	5.54	22.963	0	< 1 in 1E+9		
925.00	881.41	914.05	880.62	1.81	2.06	138,44	138.16	132.77	5.67	24.405	0	< 1 in 1E+9		
950.00	903.38	935.06	901.54	1.87	2.11	150.57	150.29	144.77	5.80	25.960	0	< 1 in 1E+9		
975.00	924.89	956.18	922.58	1.93	2.16	163.59	163.31	157.66	5.93	27.589	0	< 1 In 1E+9		
1,000.00	945.91	976.84	943.16	2.00	2.21	177.42	177.15	171.37	6.06	29.283	0	< 1 In 1E+9		
1,025.00	966.41	995.81	963.05	2.08	2.26	192.06	191.79	185.88		31.047	0	< 1 in 1E+9		
1,050.00	986.34	1,015.91	982.09	2.16	2.31	207.51	207.23	201.20		32.888	0	< 1 in 1E+9		
1,075.00	1,005.69	1,035.04	1,001.15	2.26	2.35	223.71	223,44	217.28		34.773	0	< 1 in 1E+9		
1,100.00	1,024.42	1,053.52	1,019.56	2.36	2.40	240.62	240.35	234.07	6.56	36.699	0	< 1 in 1E+9		
1,125.00	1,042.50	1,071.29	1,037.27	2.47	2.44	258.22	257.94	251.54	6.68	38.665	0	< 1 in 1E+9		
1,150.00	1,059.91	1,088.48	1,054.41	2.58	2.48	276.48	276.20	269.68		40.658	0	< 1 in 1E+9		
1,175.00	1,076.62	1,104.85	1,070.71	2.71	2.52	295.37	295.09	288.45		42.692	0	< 1 in 1E+9		
3,425.00	2,409.00	3,124.76	2,433.01	9.32	11.60	295.18	294.99	265.54	29.64		0	< 1 in 1E+9		
3,450.00	2,409.00	3,131.20	2,432.34	9.28	11.71	271.17	270.97	241.31	29.86		0	< 1 in 1E+9		
3,475.00	2,409.00	3,137.09	2,431.81	9.24	11.81	247.18	246.98	217.11	30.06	8.222	0	< 1 In 1E+9		
3,500.00	2,409.00	3,142.98	2,431.37	9.20	11.91	223.23	223.03	192.96	30.27		0	< 1 in 1E+9		
3,525.00	2,409.00	3,148.99	2,431.04	9.17	12.01	199.33	199.13	168.85	30.47		0	< 1 in 1E+9		
3,550.00	2,409.00	3,155.14	2,430.81	9.13	12.11	175.49	175.29	144.80	30.68		0	< 1 in 1E+9		
3,575.00	2,409.00	3,161.54	2,430.68	9.10	12.22	151.73	151.54	120.83	30.90		0	< 1 in 1E+9		
3,600.00	2,409.00	3,168.54	2,430.60	9.07	12.35	128.07	127.88	96.94	31.13	4.114	0	1 in 129,032,312	2	
3,625.00	2,409.00	3,175.58	2,430.55	9.05	12.47	104.55	104.35	73.22	31.33		0	1 In 13,056,917		
3,650.00	2,409.00	3,182.65	2,430.53	9.02	12.59	81.28	81.08	49.84	31.45		0	1 in 1,268,133		
3,675.00	2,409.00	3,189.77	2,430.55	9.00	12.71	58.56	58.37	27.28	31.28		0	1 in 120,152	SURVEY PROJECTION !	
3,700.00	2,409.00	3 197 04	2,430.56	8 9 8	12.84	37.39	37.19	7.54	29.85		0	1 in 12 581	SURVEY PROJECTION I	
3,725.00	2,409.00	3,204.42	2,430.56	8.97	12.97	22.56	22.36	0.56	22.00	1.026	0	1 in 3,815	SURVEY PROJECTION F	REQUIRED,

Reference: ISCWSA-UHI Introduction to Wellbore Positioning

Probability of Collision: Jerry Codling

IADC/SPE-189654-MS

Probability of Wellbore Intercept Made Easy


Jeremy Codling, Halliburton

Copyright 2018, IADC/SPE Drilling Conference and Exhibition

Test mont	e carlo sin	nulation for	wellbore in	terceptions	at high an	gle		Random	Sigma	Casing	Total	Count	Hits	Misses	Probability	V	MDR	MDO	100 Cc	unt	
Student T	Yes	Wrong Si	Yes					0.1	3.5	0.0127	100000	100000	1570	98430	1.570%	Hits	2203.192	2208.607	200	0	
MD	INC	AZI	TVD	NS	EW	EHIGH	ELAT	ROT	ALH	CAS	TFO		14551	85449	14.551%	Wrong Side	2065.061	2070	300	0	
2280,00	85.0	0 180.00	1856,72	-789.57	0,00	10.46	28,97	0,00	11.65	30	246,73	DIST				1	2271.755	2277,178	400	0	
2280.00	83.3	1 189.53	1867.72	-782,37	-0.46	10.51	28,32	0,1	12.17	30	66,44	11.30423		Run :	Simulator		2154,966	2160	500	0	
Convergen	1.69	9 -9.47	9.62	deg			11.57507			0.762	1		_				2070	2073.18	600	3	
					Pedal	10.76452				Pedal	Normal	Student6	Peripheral	Normal	Student6		2084.577	2088.481	700	5	
Sigma	Sigma va	alue for his	shaide and	lat errors	Periphera	8,166776				0.98			1.29	0.90			689,9991	690	800	8	1
			meters in			ts				1.17		0.85			0.90			2194.215	900	14	0.025
			s in Monte					Separati	on Factor	0.28			0.37					2224.478	1000	31	
Student T	Use Stud	dent T dist	ribution (de	efault is G	aussian)			Expected	probability	r.	31			35			2310	2314.908	1100	21	
Wrong Sid	Calculat	e probabil	ity of going	on 'wron	side' of a	other well		of collis	ion		3.25%	3.00%		2.86%	2.71%		2355.3	2362.567	1200	2	
								Expected	probability		6			2.0				2144.414	1300	1	
	0	50 10		Number of		00 350	400	of wrong	side		16.37%	18,26%		9,84%	12.21%		2250	2255,177	1400	0	
	-	50 10	0 150	200	250 30	X0 350	400						ration				2248.733	2255.638	1500	0	
10	0								0 5	10	15		5 30	35	40	45 50	2171.548	2178.079	1600	0	
30	0									10	.,	20 .	., .,	,,	70	43 30		2196.06	1700	0	
50	0 -														_			2239,119	1800	0	
1 3	- N							500		_								2272.743	1900	3	
70	0 -							500									2190	2195.301	2000	19	
90	0																2190	2195.304	2100	75	
£ 110	0							1000	—	•								2443.406	2200	240	
Ti.										1	Manage .						900		2300	341	
å 130	0							1500	,	-		-						2347.257	2400	178	
§ 150	0							Depth					-	-				958.2065	2500	40	
2 170	0							2000						-40			2116.535	2120.57	2600	12	
2								2000	'				-				2273.189	2278.608	2700	4	
190	-									- 4	-	-					2303.989		2800	1	
210	0			_				2500)		•				_	\rightarrow	2070	2074.154	2900	0	
230	0			-							-						1947.323				
250	-							3000	-		- 9						2231.168	2235,726			
	- k																2396.389	2400			
270	0							3500									2274.688	2280			
	1111	ELLTIII		111111	1111111	1111111	1111	3500									2184.594	2190			

Probability of Collision - Cont'd

AADE-07-NTCE-28

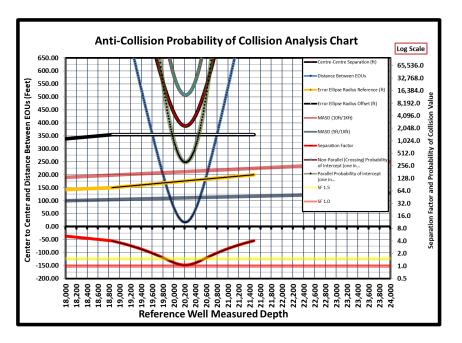
A Comprehensive Approach to Well-Collision Avoidance

B. Poedjono, Schlumberger; G. Akinniranye, Schlumberger; G. Conran, Schlumberger; K. Spidle, Schlumberger; and T. San Antonio. Schlumberger

Copyright 2007, AADE

This paper was prepared for presentation at the 2007 AADE National Technical Conference and Exhibition held at the Wyndam Greenspoint Hotel, Houston, Texas, April 10-12, 2007. This conference was sponsored by the American Association of Drilling Engineers. The information presented in this paper does not reflect any position, claim or endorsement made or implied by the American Association of Drilling Engineers, their officers or members. Questions concerning the content of this paper should be directed to the individuals listed as author(s) of this work.

- Improbable
- Unlikely
- Possible
- Likely
- Probable


Group discussion

- How do different operators address Probability of Collision in Risk Assessment / MOC process?
- Is there an agreement in the industry on a specific model to calculate Probability of Collison?
- What is the "accepted" threshold for Probability of Collision in non-HSE risk well cases?
- For operators who use Compass, what is the calculation method used in Compass? Any recommended settings for Anti-collision scan?
- Further research / testing recommendations?

Title of slide 14

Probability of Collision – Chart / Plot

- REPORTS AND CHARTS
- RISKED COST CAI CUI ATIONS
- DISPENSATION FOR NON-HSE RISK OFFSETS
- MASD AND ADP
- INCIDENCE ANGLE OF APPROACH

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Projection Ahead Case Study (Marc Willerth)

$SF = \frac{D}{k}$	$rac{R_r - R_o - S_m}{\sqrt{\sigma_s^2 + \sigma_{pa}^2}}$ (
Parameter	Description
D	The distance between a specified point on the centerline of the reference well and the nearest point on the centerline of the offset well. The point on the reference well is specified first. The point on the offset well is identified as the point of closest approach in 3D space or in the plane normal to the reference well when traveling-cylinder diagrams are being used for collision monitoring (ISCWSA 2013).
Rr	The openhole radius of the reference borehole.
Ro	The openhole radius of the offset borehole.
S _m	The surface margin term increases the effective radius of the offset well. It accommodates small, unidentified errors and helps overcome one of the geometric limitations of the separation rule, described in the Separation-Rule Limitations section. It also defines the minimum acceptable slot separation during facility design and ensures that the separation rule will prohibit the activity before nominal contact between the reference and offset wells, even if the position uncertainty is zero.
k	The dimensionless scaling factor that determines the probability of well crossing.
σ_{pa}	Quantifies the 1-SD uncertainty in the projection ahead of the current survey station. Its value is partially correlated with the projection distance, determined as the current survey depth to the bit plus the next survey interval. The magnitude of the actual uncertainty also depends on the planned curvature and on the actual BHA performance at the wellborn attitude in the formation being drilled. The project-ahead uncertainty is only an approximation, and although it is predominantly oriented normal to the reference well, it is mathematically convenient to define σ_{ps} as being the radius of sphere.
$\sigma_{\rm s}$	The relative uncertainty at one SD between the two points of interest, derived from their respective positional uncertainties σ_r and σ_o in the direction of D (see Appendix A).

$$SF = \frac{D - R_r - R_o - S_m}{k \sqrt{\sigma_s^2 + \sigma_{pa}^2}}$$

Projection Ahead 16

Future Case Study and Discussion Topic

- Unconventional Pad Surface and Intermediate Steering for Safe Separation
 - Recommended Slot Spacing
 - Surface Nudges
 - S-Shaped with 2D Curve vs. Slant with 3D Curves
- DLS Limitations for Artificial Lift (Well Life Cycle)
- Tie-In Practices for Whipstock Sidetracks & Openhole Sidetracks
- Revision 5.x Naming Format for PUMs

Thank you

Next Meeting will be on February 5, 2024.