

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

From Magnetic Data to Basement Depth to IFR Model (Magnetic Anomalies Caused by Basement and for IFR Model)

Xiong Li, Patrick Quist, Barry Wiggins Xcalibur Multiphysics

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Our Presentation at the 55th ISCWSA Meeting

⊲⊂гшс⊅∍ 55th General Meeting 30 & 31 March 2022 Virtual Conference Wellbore Positioning Technical Section Wellbore Survey Accuracy (ISCWSA Three Considerations in Building an Accurate Crustal Magnetic Field Model Xiong Li, Patrick Quist, Barry Wiggins **Xcalibur** Multiphysics 1. Basement depth as a constraint 2. Conversion considering variable DI directions 3. Use of high-resolution magnetic data

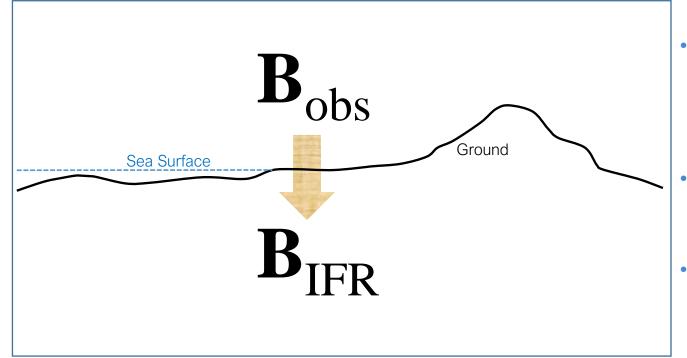
- Manoj Nair How do you place equivalent sources when there is no basement depth information/virgin area?
- Jonathan Lightfoot When wells are drilled extremely deep below the sedimentary basement, what can be used for declination, field strength and magnetic dip angle?
- Neil S. Bergstrom Is the assumption of no magnetization from sediments sufficient?

•

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

This Talk

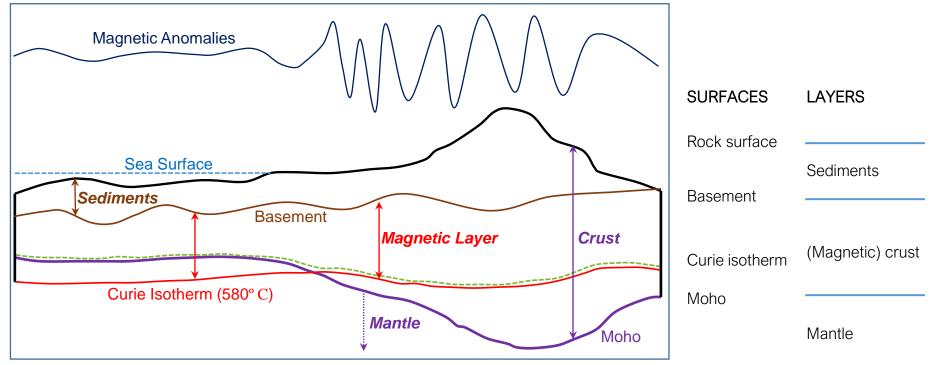
- Why does the basement matter?
- Where do I get the basement depth information?
- How can the basement depths be used in building an IFR model?
- How about basement depth uncertainties?



Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

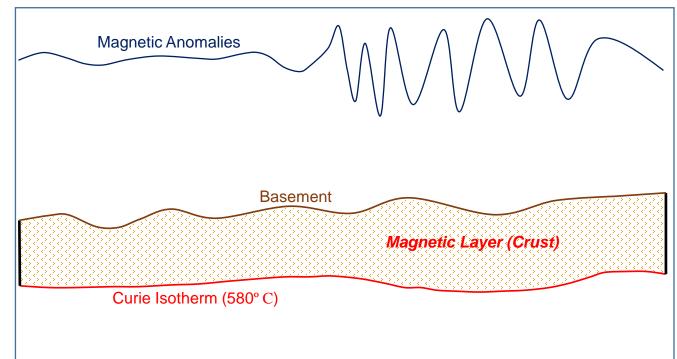
How Is an IFR Model Built?


- Building an IFR model is to infer the magnetic field below the ground and ocean surface from the observed magnetic field above this surface.
- The key is to deduce the crustal magnetic field, not the main and disturbance fields.
- This is a geophysical problem.

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Geology (Horizons & Layers) and Crustal Magnetic Anomalies


International

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

From A Magnetic Layer to Crustal Magnetic Anomalies

All materials lose magnetization when temperature reaches the Curie point (580° C).

.

- Sediments are often assumed no magnetization for our interest.
- Crustal magnetic anomalies are caused by the magnetic layer delimited by the (top surface of the) basement and the Curie depth.

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

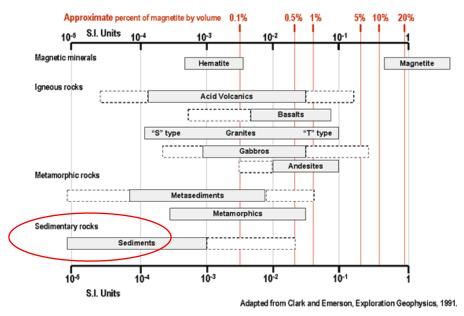
Basement

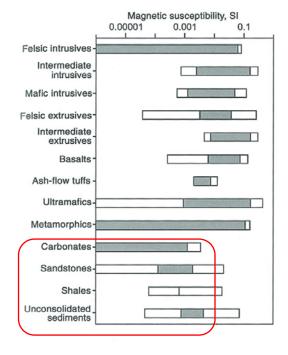
The level below which changes in rock properties do not affect observations significantly, or the lowest level of interest. Different types of basement may not coincide.

- 1. Geologic basement is the surface beneath which sedimentary rocks are not found; the igneous, metamorphic, granitized, or highly folded rock underlying sedimentary rocks.
- 2. Petroleum economic basement is the surface below which there is no current exploration interest, even though some sedimentary units may lie deeper.
- **3. Magnetic basement** is the upper surface of igneous or metamorphic rocks whose magnetization is so much larger than that of sedimentary rocks that their effects get lost in the noise.
- 4. Electrical basement is the surface below which resistivity is very high so that variations below this surface do not affect electrical-survey results significantly.
- 5. Acoustic basement is the deepest more-or-less continuous reflection.
- 6. Gravity or density basement is where a very large density contrast exists so that anomalies resulting from deeper contrasts are lost in the noise.
- 7. Hydrologic basement is the deepest point where significant porosity exists.

https://wiki.seg.org/wiki/Dictionary:Basement

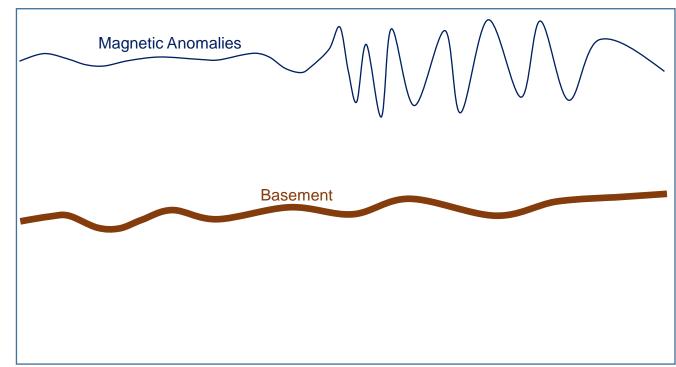
An IFR Model Constrained by Basement




Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Magnetic Susceptibilities of Various Rock Types



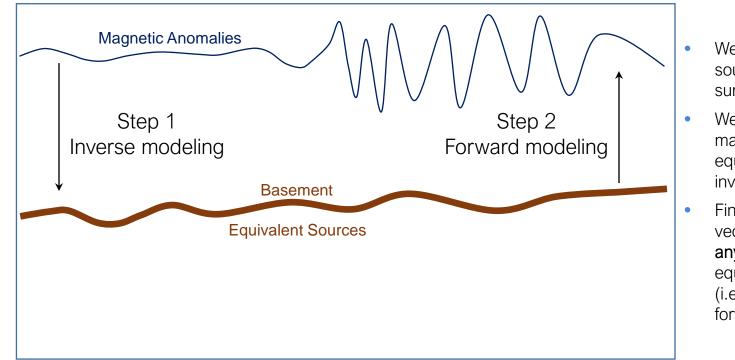
Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Theoretical Basis of the Equivalent Source Technique

The magnetic field is a potential field.

- Green's third identity states that the potential field outside a source domain can be equally described by sources on the domain boundary.
- The top surface of the basement is this boundary.
- Such fictitious sources are called equivalent sources.


SPE International

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

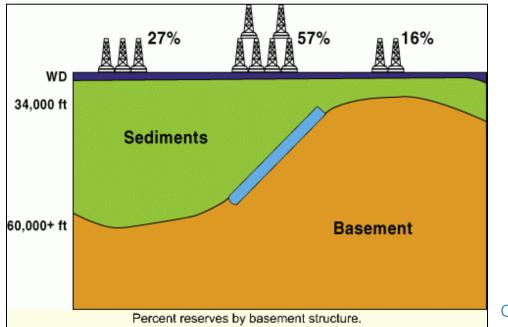
The Equivalent Source Technique: From (Magnetic Data + Basement) to IFR

- We can place equivalent source on the basement surface.
- We then determine the magnetization of equivalent sources via an inverse modeling.
- Finally, we calculate the vector magnetic field **anywhere** above the equivalent source surface (i.e., an **IFR model**) by a forward modeling.

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Magnetic Anomalies due to Basement and for IFR

- Crustal magnetic anomalies are produced by magnetization variations in the basement.
- Magnetic anomalies and the basement depths together can be used to derive a distribution of equivalent sources and thus an IFR model.



Wellbore Positioning Technical Section

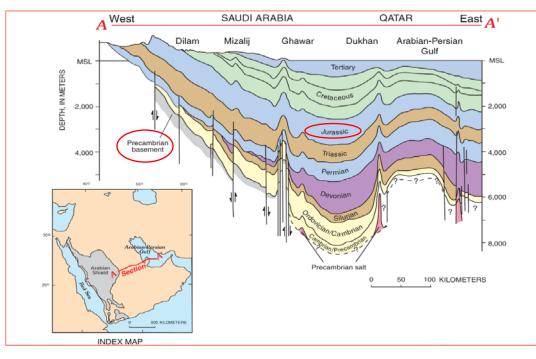
The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Basement Structure and Oil Reserves in the Deepwater GoM (US Sector)

C. Prieto and J. C. Pratsch, 2000, Offshore Magazine.

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Importance of Basement Information

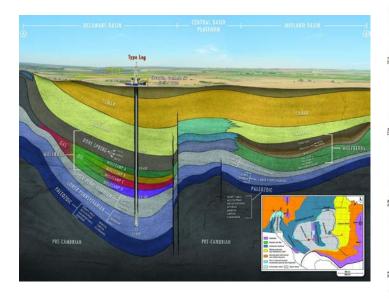

- In petroleum exploration, it is critical to understand basement depths and structures. Basement depth (or equivalently, sedimentary thickness) is a primary exploration risk parameter.
- Basin modelling (e.g., source rock volume estimation) and thermal maturity interpretation (e.g., source-rock burial-depth) need the basement depth information. Basement structure provides insight into the evolution of more recent sedimentary features (e.g., sub/mini-basin compartmentalization, salt structure distribution/kinesis, localization of reservoir-bearing structures) — for instance, in areas where the inherited basement fabric/architecture has affected (either continuously or episodically) basin evolution and development.
- The movement and flow of fluids within a basin, such as hydrocarbon migration along lateral and vertical carrier beds, can be facilitated by basement-involved sedimentary faults/fractures. Basin heat-flow patterns can also be moderated by fluid circulation along basement-involved fault systems.
- It is unimageable to drill a well when basement depths and structures are unknown.

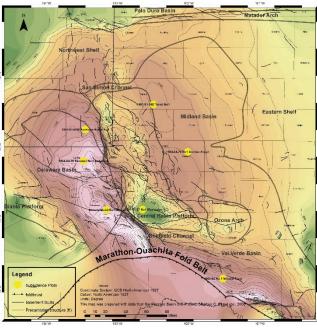
The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Regional Cross-Section of Ghawar

The main interval producing oil in Ghawar is the Arab D formation which sits in the Jurassic interval.

http://energycg.com/OPEC/SaudiArabia/OPEC_Saudi Arabia_Ghawar.html

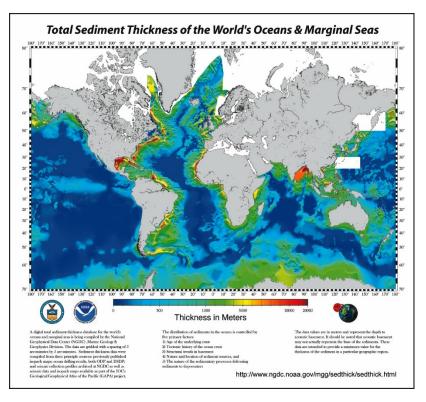



Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Precambrian Basement Depths of the Permian Basin

Ruppel, S. C., et al, 2008, Integrated synthesis of the Permian Basin: Data and models for recovering existing and undiscovered oil resources from the largest oil-bearing basin in the U.S., GIS Dataset.


Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Sediment Thickness of the Oceans

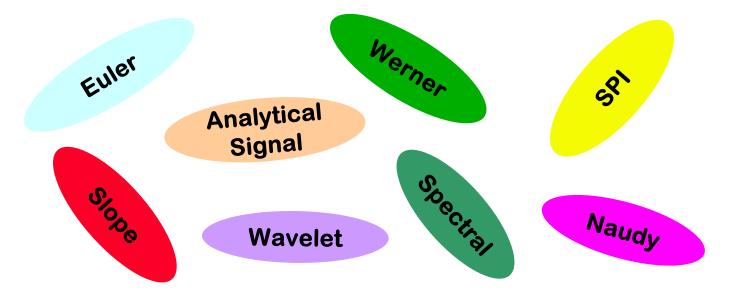
https://www.ngdc.noaa.gov/mgg/sedthick/sedthick.html

An IFR Model Constrained by Basement

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Magnetic Data for Basement Interpretation

- Magnetic data was used to interpret basement depths and structures in oil and gas exploration many decades before for wellbore surveying in directional drilling.
- The structural surface interpreted from magnetic depth estimates is often the best available approximation to the true crystalline (i.e., metamorphic/igneous) basement configuration.
- Different quick methods have been developed, over seventy years, to estimate the magnetic depth.

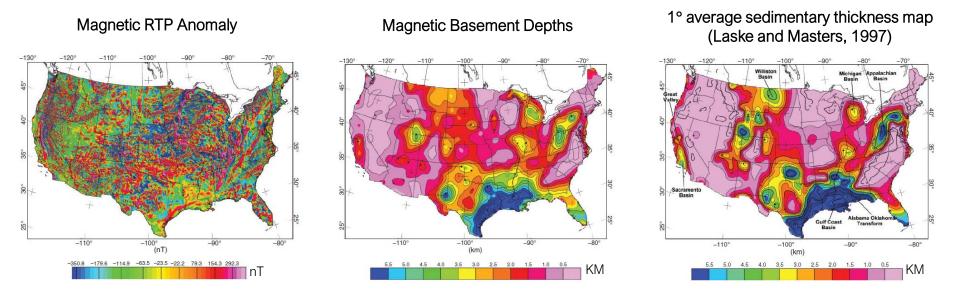


Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Methods for Magnetic Basement Depth Estimation

X. Li, 2003, On the use of different methods for estimating magnetic depth: The Leading Edge, p. 1090-1099.

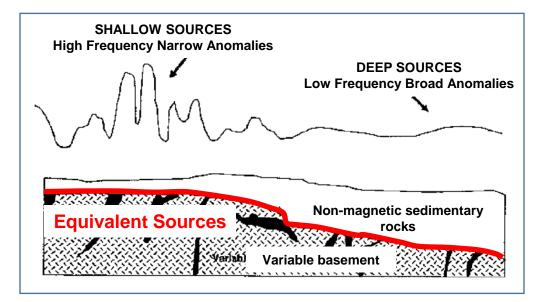

An IFR Model Constrained by Basement

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Basement Depths Estimated from Magnetic Data

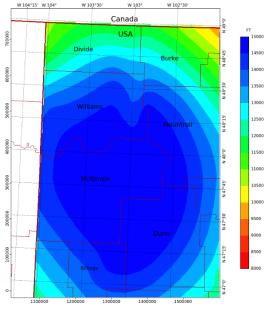
A. Salem et al, 2010, Sedimentary basins reconnaissance using the magnetic Tilt-Depth method: Exploration Geophysics, 41, 198-209.

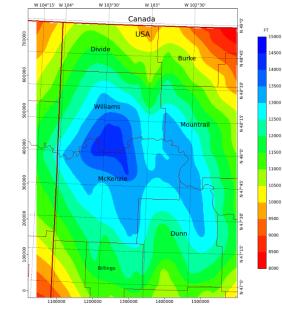


Wellbore Positioning Technical Section

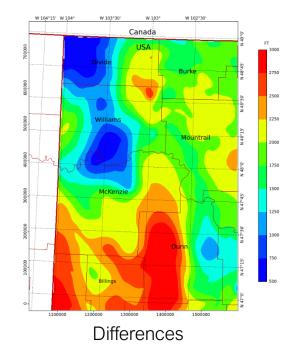
The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

The Equivalent Source Technique and the Uncertainties in Basement Depths


- Errors in magnetic data and the basement depths contribute to uncertainties in an IFR crustal field model.
- We can estimate this error to uncertainty propagation.



The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)


Two Basement Depth Models in the Bakken

Anderson, F. J., 2009, Depth to Precambrian basement rock in North Dakota: North Dakota Geological Survey.

Marshak, S., et al., 2017, The basement revealed: Tectonic insight from a digital elevation model of the Great Unconformity, USA, cratonic platform: Geology.

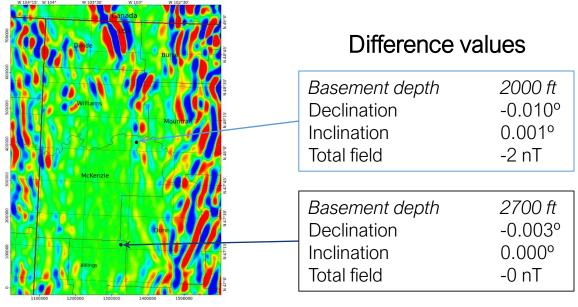
An IFR Model Constrained by Basement

International

Wellbore Positioning Technical Section

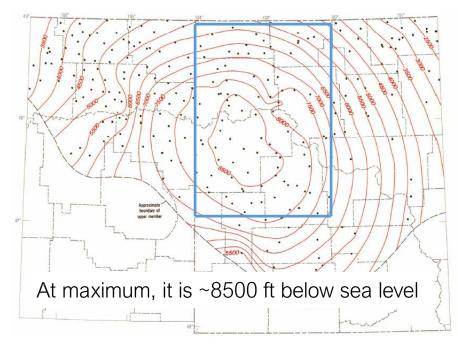
The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

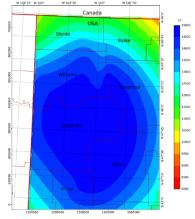
W 104°30' W 104° W 103°30' W 103° W 102°30' W 102° Magnetic Anomalies in the Bakken An IFR model area 1200000 1000000 1400000 1600000


An IFR Model Constrained by Basement

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Effects on IFR of Two Basement Depth Models in the Bakken


Declination differences at 8500 ft

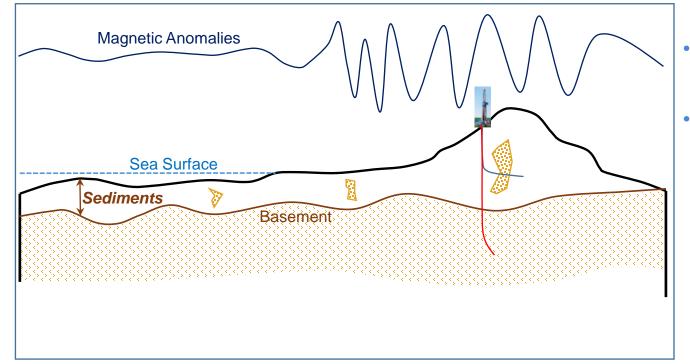


The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Top Depths of the Bakken Formation

Rig location

Basement depths are >12 kft bsl under rigs


https://store.usgs.gov/assets/mod/storefiles/PDF/OC-126_ND_MT_Selected_Physical_Properties_Bakken_Formation_1985.pdf

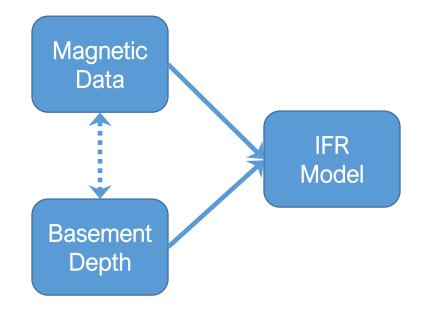
Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Strong Magnetic Sources above Basement, and Drilling into Basement

Theoretically and practically, IFR doesn't work.

One better seeks alternatives.



The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Conclusions

- I. Building an IFR model requires magnetic data.
- II. Building an accurate IFR model should use the basement depth information.
- III. Magnetic data provides one way to estimate basement depths.
- IV. Errors in both magnetic data and basement depths contribute to IFR model uncertainties, and these uncertainties can be estimated.
- V. It is rare and unreasonable to drill when basement depths are unknown.

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Thank you

Questions (bets@xcaliburmp.com)