

Wellbore Positioning Technical Section

Definitive Survey Methodology Update to an Old Concept for Higher Reliability

Wellbore Positioning Technical Section

Why Is Well Positioning Important?

1. Wellbore placed is the in geological target

2. Risk mitigation, helping operators avoid HSE events

3. To make the production activity more sustainable

Definitive Survey Methodology - Update to an Old Concept for Higher Reliability

Wellbore Positioning Technical Section

What Is Wellbore Position?

MD (m)	Inc (deg.)	Azimuth (deg.)
3,182.24	14.99	11.02
3,219.45	16.18	11.16
3,256.62	17.4	12.31
3,293.82	19.06	5.7
3,330.99	19.8	10.82
3,368.17	21.42	12.9
3,405.37	23.04	16.08
3,442.53	24.73	11.83
3,479.73	25.75	13.04
3,508.24	25.74	12.47

Uncertainty of Position

Directional Data

Definitive Survey Methodology - Update to an Old Concept for Higher Reliability

Ш

Wellbore Positioning Technical Section

Wellbore Survey Reliability

Assumptions and Limitations of the Model

		Rigorous and regular tool calibration.
--	--	--

- A sufficiently short survey interval to correctly describe the wellbore.
- Field QC checks, such as total magnetic field, gyro drifts, total gravity field and magnetic dip angle on each survey measurement.
- The use of non-magnetic spacing for MWD surveys IV according to industry norms.

"

ISCWSA

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

The model only applies to surveys under normal industry bestpractice procedures.

Update To An Old Concept For Higher Reliability

A directional survey that passes individual QC and FAC may still have undetected errors outside its error model

The directional survey that is rejected by the individual tool quality control does not meet the premises of its error model, and therefore, the EOU assigned to the tool is no longer valid

Passing the single tool QC is a necessary condition but not sufficient

Wellbore Positioning Technical Section

Quality Control Pass But Not Sufficient

Definitive Survey Methodology - Update to an Old Concept for Higher Reliability

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

6

Wellbore Positioning Technical Section

Quality Control Pass But Not Sufficient

Definitive Survey Methodology - Update to an Old Concept for Higher Reliability

≪⊆⊂∭⊆₽≫

Wellbore Positioning Technical Section

Quality Control Pass But Not Sufficient

Definitive Survey Methodology - Update to an Old Concept for Higher Reliability

⊲⊆⊏∭⊆₽≫

Wellbore Positioning Technical Section

DEFINITIVE SURVEY METHODOLOGY – OPERATING PROCEDURE

Job Preparation

Gyro & MWD tool in the BHA

Definitive Survey Methodology - Update to an Old Concept for Higher Reliability

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

9

Wellbore Positioning Technical Section

Definitive Survey Methodology

- Comparison between surveys of distinct and independent sensors
- Relative Instrument Performance (RIP), Chi-Square test and Uncertainty Ellipse Comparison

Highside, Lateral, Along-hole, Co-ordinate Difference Test	Pass	Pass	Pass
Chi-square test value:	3.5	13.2	0.0
Tolerance:	34.4	34.4	34.4
No. Overlapping survey stations used:	15	15	15

Definitive Survey Methodology - Update to an Old Concept for Higher Reliability

The Methodology Applied In Remote And Autonomous Drilling Operations

- It is a common practice nowadays for wells to be carried out with remote monitoring, and this tends to evolve into an autonomous activity as new methods and technologies become available.
- New gyroscopic technologies, such as solid-state GWD, make it possible to overcome operational challenges in a cost-effective way.
- The comparison of surveys in real-time, with different and independent sensors, allows the verification of positional data and favors the execution of autonomous drilling operations with high reliability.

Wellbore Positioning Technical Section

Reference: Well A

- 12 1/4" x 13 1/2" section
- MWD and GWD tools provided surveys approved in their internal quality controls during drilling
- Maximum depth of the GWD sensor at 5708m
- GWD inrun tool was programmed to outrun memory mode

Definitive Survey Methodology - Update to an Old Concept for Higher Reliability

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Reference: Well A

RIP test	M	lean Results		STD Resi	ults	10
Inclination	0.031	Good agreement	2.132	Disag	reement	5
Azimuth	-0.069	Good agreement	1.388	Av agre	erage ement	e de la
				Highs		
Highside, Lateral, Along-hole,		Pass	Pass	Pass	-5	
Co-ordinate Difference Test		1 400				
Chi-square test value:		10.6	21.5	0.0	-10	
Tolerance:		34.4	34.4	34.4		
No. Overlapping survey stations used:		15	15	15	-15	

Definitive Survey Methodology - Update to an Old Concept for Higher Reliability

≪⊆⊂∭⊆₽≫

Wellbore Positioning Technical Section

Reference: Well A

Tool	Semi-major Error	Semi-minor Error	Ellipse Area	
MWD	19.64 m	13.54 m	835.43 m ²	
GWD inrun	11.47 m	10.43 m	375.83 m ²	
GWDOMM	8.65 m	7.82 m	212.61 m ²	S

Tests	The result of tests per
Relative Instrument Performance (RIP) test	Average agreem
Chi-Square test	Pass
Comparison of EOU in TD	Very good
Definitive Survey Methodology	Pass

Definitive Survey Methodology - Update to an Old Concept for Higher Reliability

⊲⊆гш⊆₽≫

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Tool IPM

MWD_AX_SAG solid-state_GWD solid-state drop gyro

rformed

ent

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Average the surveys! Assuming the surveys passed the Definitive Survey Methodology

15

X

Wellbore Positioning Technical Section

Conclusion

- Definitive Survey Methodology is based on the overlap of surveys from two tools with different operating principles and references, and it is always an advantage over data from a single tool.
- The Definitive Survey Methodology optimizes well-to-well error model analysis, allowing nonexperts to verify the reliability of positioning data.
- Comparison between surveys before entering the reservoirs allows the fulfillment of the directional objectives as close as possible to the projected trajectory.
- A steppingstone for Averaging Survey.

Wellbore Positioning Technical Section

Conclusion

- Definitive Survey Methodology enables real-time auditing, increasing lhe autonomous operations.
- Today's drilling practices must not be a challenge for tomorrow's operations.
- Ensuring the positioning of wells enables optimizing contingency plans and minimizing possible negative consequences of drilling wells. This reduces the environmental impact of the oil & gas industry.

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

reliability in

Wellbore Positioning Technical Section

Questions

Definitive Survey Methodology - Update to an Old Concept for Higher Reliability

