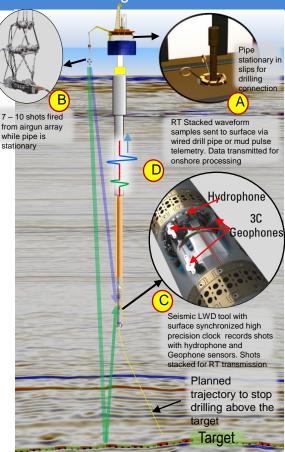
ERD wellbore positioning with LWD Seismic

Neil R. Kelsall & Ludivine C. Euranie (Schlumberger)

Agenda

- Intro to LWD Seismic AKA Seismic While Drilling
- Lateral wellbore positioning using seismic travel time
- Modelling example and results
- Case study
- Conclusion


Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

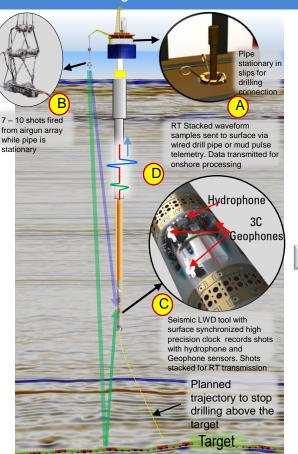
Seismic While Drilling

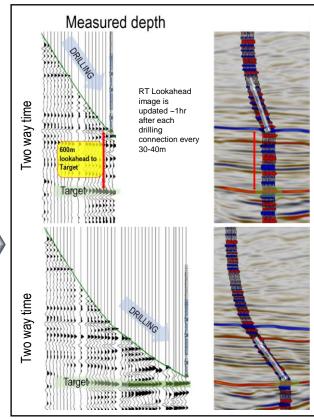
- Length: ~ 14 ft
- Pressure Rating: 23k 30k PSI
- Any Hole size > 8 3/8"
- Any Hole angle

ZERO RIG TIME FOR NORMAL DRILLING ACQUISITION

4 x Playback Speed

4 x Playback Speed when shooting


Wellbore Positioning Technical Section



The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

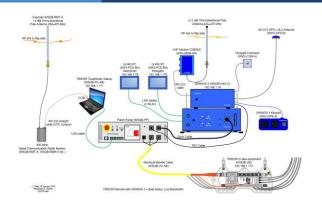
Seismic While Drilling

- Length: ~ 14 ft
- Pressure Rating: 23k 30k PSI
- Any Hole size > 8 3/8"
- Any Hole angle

OTC-30811-MS • Safe Landing Of A Deviated Well With A Rig Source VSP Using RT Lookahead Seismic Technology • Neil Kelsall et al

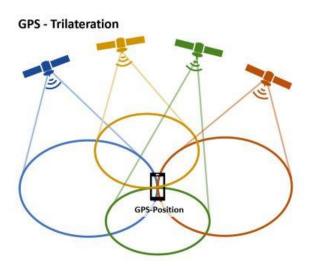
Seismic airgun deployment from a vessel

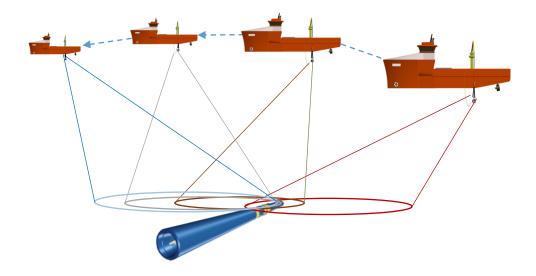
Title of slide 6

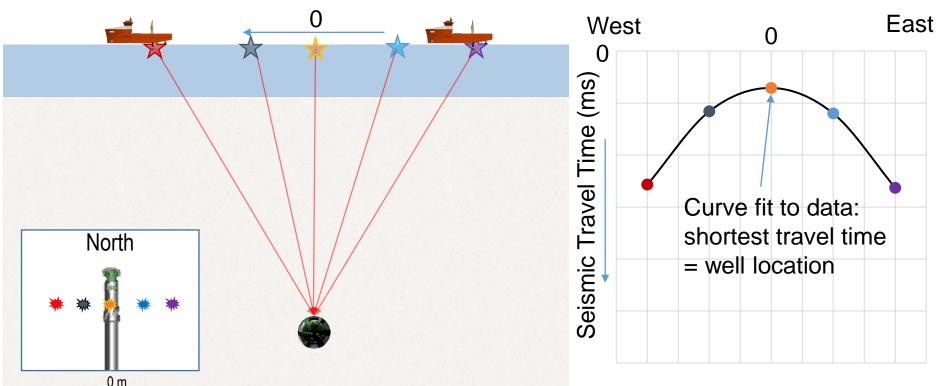

Wellbore Survey Accuracy (ISCWSA)

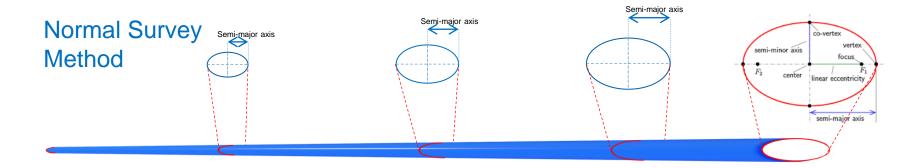
Gun GPS Positioning system accuracy

Horizontal Position Accuracy (RMS)


,	
Single point L1	1.5 m
Single point L1/L2	1.2 m
NovAtel CORRECT™	
» SBAS ⁴	60 cm
» DGPS	40 cm
» PPP ⁵	
TerraStar-L	40 cm
TerraStar-C	4 cm

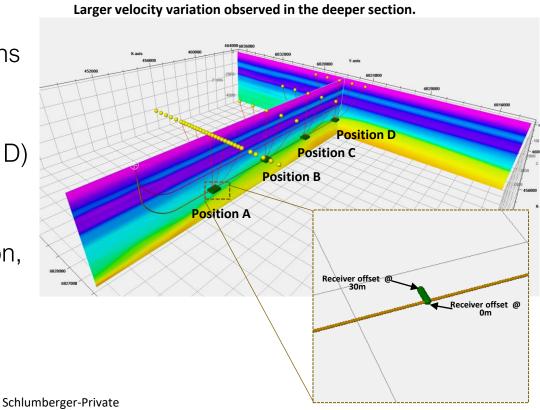



Borehole seismic: "GPS for the BHA"



Lateral position of the well from seismic travel time

Lateral uncertainty of wellbore position

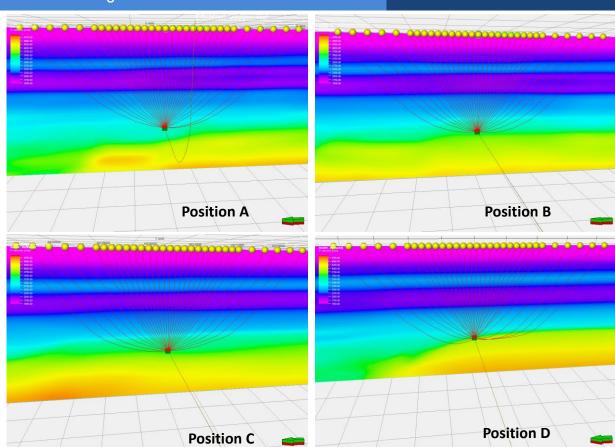


Experiment - Model Inputs

Real Velocity model relatively flat with some small lateral variation observed.

 Two ERD wells built [horizontal paths at 2000m & 3000m TVD]

- Four position of receivers (A, B, C, D) along the well trajectory.
- For each downhole receiver position, Receiver offset shifted by 5m up to 30m to observe sensitivity.


Julianipeiger i nivace

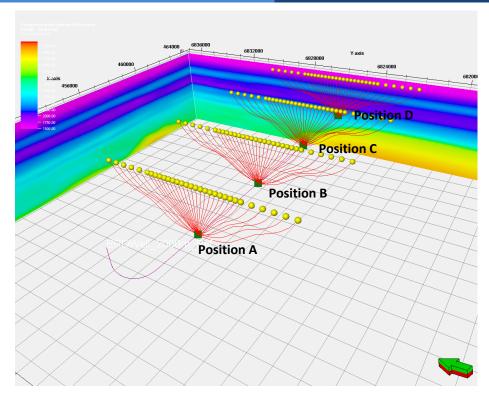
The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

EXPERIMENT 1

- ERD Well = 3000m
- 4 receiver positions (A, B, C, D) along the horizontal well path

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)


EXPERIMENT 1 – RESULTS

						uice Dep	loyment	[m]			Error [m]										
B POSITION	Receiver Offset ference [m]	200	400	600	800	1000	1200	1400	1600	1800	2000	Diff 200	Diff 400	Diff 600	Diff 800	Diff 1000	Diff 1200	Diff 1400	Diff 1600	Diff 1800	Diff 2000
B POSITION	0	-17.1	-12.1	-5.7	0.4	3.6	5.8	10.8	9.2	0.8	-8.0	-17.1	-12.1	-5.7	0.4	3.6	5.8	10.8	9.2	0.8	-8.0
B POSITION	5	-11.4	-2.9	1.4	10.7	9.3	11.7	14.2	15.0	5.0	-3.0	-16.4	-7.9	-3.6	5.7	4.3	6.7	9.2	10.0	0.0	-8.0
<u>m</u>	10	-7.1	-0.6	5.0	12.9	12.9	16.7	17.5	16.7	9.2	2.0	-17.1	-10.6	-5.0	2.9	2.9	6.7	7.5	6.7	-0.8	-8.0
<u>m</u>	15	-0.2	5.0	11.4	15.0	15.0	21.7	21.7	20.8	13.3	5.0	-15.2	-10.0	-3.6	0.0	0.0	6.7	6.7	5.8	-1.7	-10.0
<u>m</u>	20	8.6	12.1	14.3	23.6	22.1	26.7	25.8	26.7	16.7	10.0	-11.4	-7.9	-5.7	3.6	2.1	6.7	5.8	6.7	-3.3	-10.0
	25	12.9	18.6	22.1	28.6	26.4	31.7	33.3	31.7	21.7	15.0	-12.1	-6.4	-2.9	3.6	1.4	6.7	8.3	6.7	-3.3	-10.0
	30	18.6	20.7	26.4	30.0	32.9	37.5	36.7	35.0	25.0	20.0	-11.4	-9.3	-3.6	0.0	2.9	7.5	6.7	5.0	-5.0	-10.0
	0	10.7	11.4	12.1	13.6	17.5	15.8	13.3	11.7	9.0	4.0	10.7	11.4	12.1	13.6	17.5	15.8	13.3	11.7	9.0	4.0
POSITION	5	17.1	16.4	18.6	17.9	23.3	21.7	18.3	15.8	14.0	8.0	12.1	11.4	13.6	12.9	18.3	16.7	13.3	10.8	9.0	3.0
POSITIO	10	21.4	21.4	21.4	23.6	25.8	25.0	22.5	20.8	19.0	12.0	11.4	11.4	11.4	13.6	15.8	15.0	12.5	10.8	9.0	2.0
P08	15	26.4	27.1	27.1	27.1	33.3	30.0	26.7	24.2	23.0	17.0	11.4	12.1	12.1	12.1	18.3	15.0	11.7	9.2	8.0	2.0
1"1	20	32.1	32.1	32.1	32.1	40.8	35.0	31.7	28.3	28.0	21.0	12.1	12.1	12.1	12.1	20.8	15.0	11.7	8.3	8.0	1.0
	25	37.1	36.4	37.1	37.1	42.5	39.2	35.8	32.5	32.0	25.0	12.1	11.4	12.1	12.1	17.5	14.2	10.8	7.5	7.0	0.0
	30	43.6	42.1	42.1	41.4	49.2	44.2	40.8	36.7	37.0	28.0	13.6	12.1	12.1	11.4	19.2	14.2	10.8	6.7	7.0	-2.0
	0	3.8	5.3	7.7	11.0	15.3	11.7	12.3	10.4	9.4	12.7	3.8	5.3	7.7	11.0	15.3	11.7	12.3	10.4	9.4	12.7
ပ	5	7.2	7.7	17.8	19.9	15.9	18.4	15.6	15.6	14.6	15.4	2.2	2.7	12.8	14.9	10.9	13.4	10.6	10.6	9.6	10.4
8	10	13.0	14.5	17.0	27.1	22.0	21.0	23.1	20.9	18.5	19.9	3.0	4.5	7.0	17.1	12.0	11.0	13.1	10.9	8.5	9.9
POSITION	15	18.9	21.0	22.0	31.0	25.5	26.9	26.3	24.8	22.6	23.9	3.9	6.0	7.0	16.0	10.5	11.9	11.3	9.8	7.6	8.9
۱ğ۱	20	22.9	27.0	29.1	33.6	32.4	32.7	31.7	28.6	27.1	29.0	2.9	7.0	9.1	13.6	12.4	12.7	11.7	8.6	7.1	9.0
1-1	25	27.7	30.6	34.0	40.8	37.4	36.0	36.5	34.0	31.2	33.0	2.7	5.6	9.0	15.8	12.4	11.0	11.5	9.0	6.2	8.0
\vdash	30	30.7	29.5	32.9	47.0	42.3	42.0	38.1	38.9	35.4	37.2	0.7	-0.5	2.9	17.0	12.3	12.0	8.1	8.9	5.4	7.2
	0	-3.9	-1.7	-1.2	4.9	-4.1	-4.7	-11.8	-32.8	-55.0	-68.9	-3.9	-1.7	-1.2	4.9	-4.1	-4.7	-11.8	-32.8	-55.0	-68.9
	5	1.9	1.2	8.6	11.2	-1.6	2.0	-5.4	-28.2	-49.7	-64.0	-3.1	-3.8	3.6	6.2	-6.6	-3.0	-10.4	-33.2	-54.7	-69.0
POSITION	10	6.4	0.6	13.4	20.6	11.3	4.6	4.7	-20.9	-46.3	-50.7	-3.6	-9.4	3.4	10.6	1.3	-5.4	-5.3 45.4	-30.9	-56.3	-60.7
 	15	10.7	7.0 8.8	11.6	13.0	4.1	8.3	-0.1	-21.2	-44.8	-57.3	-4.3	-8.0	-3.4	-2.0	-10.9	-6.7	-15.1	-36.2	-59.8	-72.3
8	20	20.0		35.9	20.1	8.8	20.7	10.2	-14.0	-36.6	-49.9	0.0	-11.2	15.9	0.1	-11.2	0.7	-9.8	-34.0	-56.6	-69.9
	25 30	21.7 27.0	10.9 24.1	17.4 16.4	22.2 25.8	23.2 22.8	15.4 21.8	9.2 13.3	-7.9 -6.4	-32.7 -33.1	-52.5 -43.5	-3.3 -3.0	-14.1 -5.9	-7.6 -13.6	-2.8 -4.2	-1.8 -7.2	-9.6 -8.2	-15.8 -16.7	-32.9 -36.4	-57.7 -63.1	-77.5 -73.5 +1
\Box									-n 4	3.5 1	-4.1.7	5 U	-5 9	-1.5 h	-4/	-1/				-n.5 l	-/35

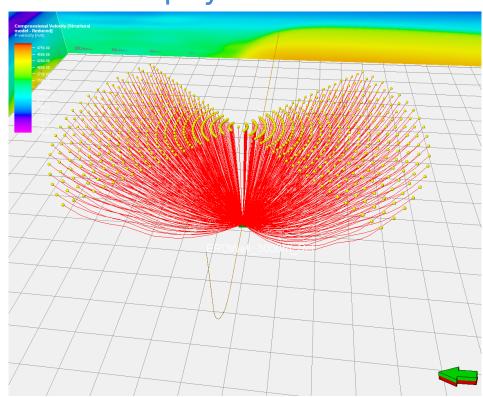
Schlumberger-Private

EXPERIMENT 2 – ERD 2000M

- ERD Well = 2000m
- 4 receiver positions (A, B, C, D) along the horizontal well path

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

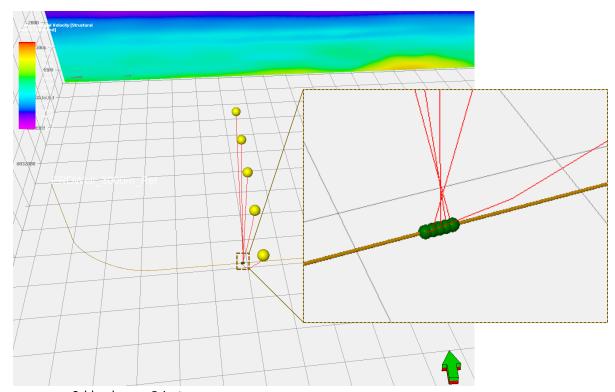

EXPERIMENT 2 – RESULTS

					Sc	urce De	ploymen	t [m]			Error [m]										
	Receiver Offset reference [m]	200	400	600	800	1000	1200	1400	1600	1800	2000	Diff 200	Diff 400	Diff 600	Diff 800	Diff 1000	Diff 1200	Diff 1400	Diff 1600	Diff 1800	Diff 2000
	0	-5.4	-5.1	-4.5	4.3	3.9	3.8	5.5	3.4	4.5	6.1	-5.4	-5.1	-4.5	4.3	3.9	3.8	5.5	3.4	4.5	6.1
∢	5	-3.4	-1.6	-1.0	3.9	5.8	6.2	10.0	6.9	7.9	9.1	-8.4	-6.6	-6.0	-1.1	0.8	1.2	5.0	1.9	2.9	4.1
	10	1.2	3.4	13.0	17.7	13.2	6.2	14.2	14.2	15.5	14.4	-8.8	-6.6	3.0	7.7	3.2	-3.8	4.2	4.2	5.5	4.4
POSITION	15	3.9	1.7	7.8	5.4	11.5	12.6	12.9	12.3	18.7	17.1	-11.1	-13.3	-7.2	-9.6	-3.5	-2.4	-2.1	-2.7	3.7	2.1
छ	20	8.9	11.4	18.5	8.2	16.1	16.2	15.7	16.9	23.3	21.0	-11.1	-8.6	-1.5	-11.8	-3.9	-3.8	-4.3	-3.1	3.3	1.0
٦	25	14.4	17.7	18.3	22.6	25.2	15.4	26.7	24.3	26.3	26.6	-10.6	-7.3	-6.7	-2.4	0.2	-9.6	1.7	-0.7	1.3	1.6
	30	18.9	21.6	40.4	7.8	17.3	28.8	22.5	22.3	23.8	26.7	-11.1	-8.4	10.4	-22.2	-12.7	-1.2	-7.5	-7.7	-6.2	-3.3
	0	-1.0	-1.4	-1.6	0.7	0.4	1.4	3.7	4.6	5.5	6.9	-1.0	-1.4	-1.6	0.7	0.4	1.4	3.7	4.6	5.5	6.9
l	5	4.9	4.3	-1.6	6.2	5.6	6.7	9.1	8.4	11.4	12.5	-0.1	-0.7	-6.6	1.2	0.6	1.7	4.1	3.4	6.4	7.5
	10	10.5	10.8	6.2	4.3	10.6	12.6	11.8	10.9	14.6	17.0	0.5	0.8	-3.8	-5.7	0.6	2.6	1.8	0.9	4.6	7.0
POSITION	15	14.2	15.0	14.6	12.8	15.4	16.9	16.4	16.9	20.4	20.4	-0.8	0.0	-0.4	-2.2	0.4	1.9	1.4	1.9	5.4	5.4
18	20	17.8	20.1	19.6	17.4	22.0	20.5	24.3	21.5	25.1	24.7	-2.2	0.1	-0.4	-2.6	2.0	0.5	4.3	1.5	5.1	4.7
₽	25	22.5	23.4	21.6	23.4	21.7	25.9	26.5	26.5	29.4	27.6	-2.5	-1.6	-3.4	-1.6	-3.3	0.9	1.5	1.5	4.4	2.6
	30	28.3	28.6	26.2	28.2	29.3	28.4	29.4	30.7	32.9	32.8	-1.7	-1.4	-3.8	-1.8	-0.7	-1.6	-0.6	0.7	2.9	2.8
	0	-2.9	-2.4	-2.5	-20.5	1.7	4.9	10.3	-0.8	-7.6	6.3	-2.9	-2.4	-2.5	-20.5	1.7	4.9	10.3	-0.8	-7.6	6.3
ان	5	1.9	3.5	1.1	-13.8	2.0	10.5	20.3	4.7	-4.3	6.4	-3.1	-1.5	-3.9	-18.8	-3.0	5.5	15.3	-0.3	-9.3	1.4
	10	6.3	3.3	12.9	-11.6	15.3	18.9	24.6	4.7	11.2	98.4	-3.7	-6.7	2.9	-21.6	5.3	8.9	14.6	-5.3	1.2	88.4
POSITION	15	10.8	7.3	18.7	9.6	20.6	15.1	21.0	10.6	26.6	23.3	-4.2	-7.7	3.7	-5.4	5.6	0.1	6.0	-4.4	11.6	8.3
18	20	16.0	10.6	15.9	-4.1	23.2	27.8	26.2	11.4	27.9	23.7	-4.0	-9.4	-4.1	-24.1	3.2	7.8	6.2	-8.6	7.9	3.7
□	25	18.3	14.9	21.4	1.3	42.1	26.1	35.0	18.7	18.1	34.4	-6.7	-10.1	-3.6	-23.7	17.1	1.1	10.0	-6.3	-6.9	9.4
	30	23.7	19.8	28.6	1.5	28.9	26.3	36.8	6.6	20.6	36.4	-6.3	-10.2	-1.4	-28.5	-1.1	-3.7	6.8	-23.4	-9.4	6.4
	0	0.1	-0.2	-1.0	-15.6	-10.8	0.4	-9.2	-7.5	-5.6	-9.2	0.1	-0.2	-1.0	-15.6	-10.8	0.4	-9.2	-7.5	-5.6	-9.2
	5	5.9	1.7	-0.8	-6.4	-14.6	5.2	20.6	-3.4	-11.7	-2.9	0.9	-3.3	-5.8	-11.4	-19.6	0.2	15.6	-8.4	-16.7	-7.9
	10	11.8	6.7	11.2	-1.0	-6.5	12.0	24.2	11.7	0.9	5.5	1.8	-3.3	1.2	-11.0	-16.5	2.0	14.2	1.7	-9.1	-4.5
POSITION	15	18.9	16.3	9.3	0.9	15.5	6.3	12.0	12.0	13.9	7.8	3.9	1.3	-5.7	-14.1	0.5	-8.7	-3.0	-3.0	-1.1	-7.2
8	20	23.5	20.3	29.6	13.0	14.7	16.0	15.5	19.9	11.6	137.4	3.5	0.3	9.6	-7.0	-5.3	-4.0	-4.5	-0.1	-8.4	117.4
	25	25.9	23.4	30.2	7.5	19.3	27.2	28.6	21.9	5.6	18.6	0.9	-1.6	5.2	-17.5	-5.7	2.2	3.6	-3.1	-19.4	-6.4
\perp	30	30.0	24.2	37.1	14.3	25.7	31.7	24.0	27.6	31.5	21.5	0.0	-5.8	7.1	-15.7	-4.3	1.7	-6.0	-2.4	1.5	-8.5 +1
												-10				0					+1

EXPERIMENT 3 – Influence of Azimuth deployment

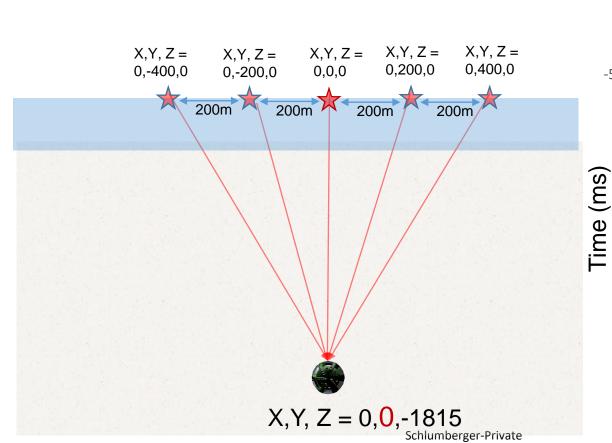
- ERD Well = 3000m
- 1 receiver position (A) along the horizontal well path
- 801 sources deployment with 5 sources per deployment
- Is there an optimum Azimuth that minimize the error?

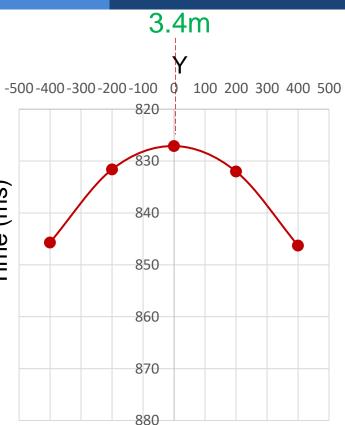
Wellbore Positioning Technical Section


The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

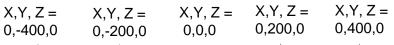
EXPERIMENT 3 – RESULTS

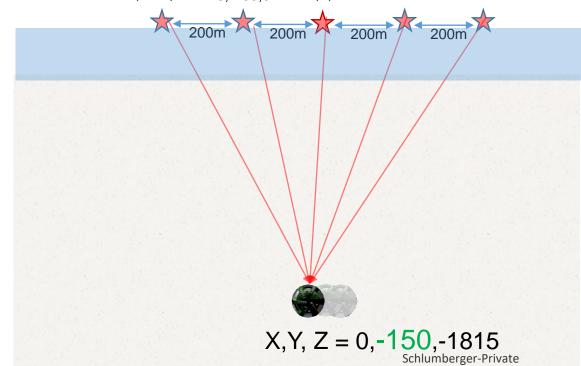
					Sou	ırce Dep	oloymen	ıt [m]			Error [m]										
	Azimuth (deg)	200	400	600	800	1000	1200	1400	1600	1800	2000	Diff 200	Diff 400	Diff 600	Diff 800	Diff 1000	Diff 1200	Diff 1400	Diff 1600	Diff 1800	Diff 2000
	0	-16.3	-11.4	-6.1	-0.7	-2.1	9.7	6.7	4.8	3.4	-9.3	-16.3	-11.4	-6.1	-0.7	-2.1	9.7	6.7	4.8	3.4	-9.3
	5	-15.8	-11.3	-5.3	0.5	14.6	10.1	20.8	11.4	5.7	0.2	-15.8	-11.3	-5.3	0.5	14.6	10.1	20.8	11.4	5.7	0.2
	10	-15.6	-11.4	-6.3	-0.5	-0.2	0.3	7.9	5.3	8.5	-2.2	-15.6	-11.4	-6.3	-0.5	-0.2	0.3	7.9	5.3	8.5	-2.2
	15	-14.6	-10.8	-6.0	1.0	2.3	16.3	14.4	11.5	12.3	3.6	-14.6	-10.8	-6.0	1.0	2.3	16.3	14.4	11.5	12.3	3.6
	20	-13.9	-10.2	-5.0	2.2	7.1	-1.3	14.9	8.4	10.8	9.2	-13.9	-10.2	-5.0	2.2	7.1	-1.3	14.9	8.4	10.8	9.2
	25	-12.9	-9.3	-4.8	2.6	11.1	23.3	12.4	16.0	13.7	11.7	-12.9	-9.3	-4.8	2.6	11.1	23.3	12.4	16.0	13.7	11.7
	30	-11.7	-8.7	-4.7	2.3	22.4	12.2	14.7	20.7	11.8	16.8	-11.7	-8.7	-4.7	2.3	22.4	12.2	14.7	20.7	11.8	16.8
∢	35	-11.3	-8.1	-4.5	2.3	10.5	14.8	15.1	17.7	13.7	10.0	-11.3	-8.1	-4.5	2.3	10.5	14.8	15.1	17.7	13.7	10.0
	40	-9.2	-7.0	-3.5	2.2	10.6	10.1	20.6	16.8	12.2	11.8	-9.2	-7.0	-3.5	2.2	10.6	10.1	20.6	16.8	12.2	11.8
POSITION	45	-8.2	-6.0	-2.9	2.0	9.5	9.4	15.6	10.2	17.8	10.2	-8.2	-6.0	-2.9	2.0	9.5	9.4	15.6	10.2	17.8	10.2
ĕ	135	13.6	9.0	3.1	-1.9	-4.0	-11.3	-15.1	-15.5	10.0	16.3	13.6	9.0	3.1	-1.9	-4.0	-11.3	-15.1	-15.5	10.0	16.3
	140	14.3	9.0	3.5	-0.6	-3.9	-17.1	-1.4	-8.0	10.2	18.7	14.3	9.0	3.5	-0.6	-3.9	-17.1	-1.4	-8.0	10.2	18.7
	145	14.7	9.2	3.5	-1.4	-6.8	-17.4	-6.3	-3.5	14.8	24.1	14.7	9.2	3.5	-1.4	-6.8	-17.4	-6.3	-3.5	14.8	24.1
	150	15.1	9.7	4.2	-0.4	-6.0	3.2	-2.5	-4.4	13.7	30.5	15.1	9.7	4.2	-0.4	-6.0	3.2	-2.5	-4.4	13.7	30.5
	155	15.7	9.9	4.5	-1.6	-8.9	-8.2	-0.5	-4.5	12.5	25.3	15.7	9.9	4.5	-1.6	-8.9	-8.2	-0.5	-4.5	12.5	25.3
	160	16.3	10.9	5.1	0.5	-7.0	4.1	-1.0	-4.8	15.9	26.6	16.3	10.9	5.1	0.5	-7.0	4.1	-1.0	-4.8	15.9	26.6
	165	16.3	11.2	5.1	-0.2	8.1	5.6	5.1	-7.1	10.7	25.6	16.3	11.2	5.1	-0.2	8.1	5.6	5.1	-7.1	10.7	25.6
	170	15.5	11.2	5.7	0.9	6.1	3.4	-7.1	-4.3	6.9	21.4	15.5	11.2	5.7	0.9	6.1	3.4	-7.1	-4.3	6.9	21.4
	175	15.5	11.2	6.0	1.0	14.1	-4.4	-2.1	-5.5	3.4	19.8	15.5	11.2	6.0	1.0	14.1	-4.4	-2.1	-5.5	3.4	19.8

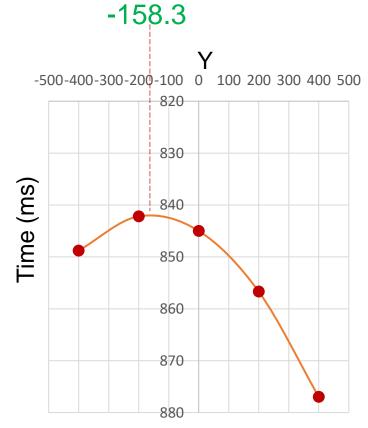

EXPERIMENT 4 – Moving RECEIVERS position


- ERD Well = 3000m
- 5 receiver positions along the horizontal well path spaced 10m or 30m apart.
- 5 sources deployed
- Can we still locate the receiver if each measurement is taken with the receiver moving by 1 joint or 1 stand? (+10m or +30m)?
- No significant impact on results. Data may be acquired during drilling connections.

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

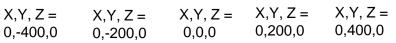


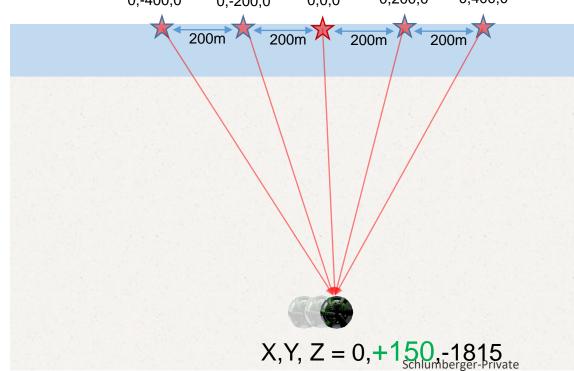

$$X,Y,Z=0,???,-1815$$

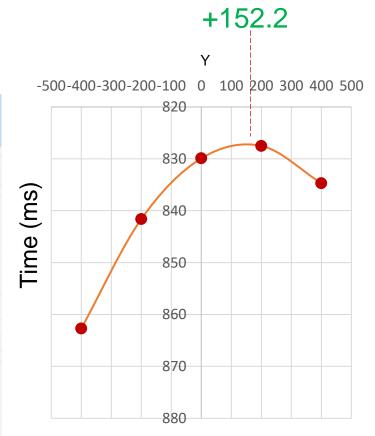


The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Modeling Case Study 1

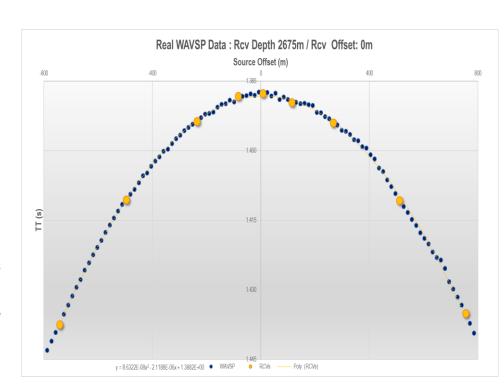


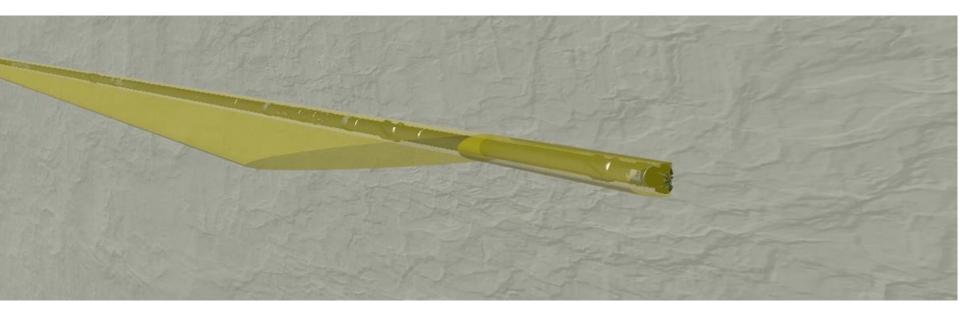




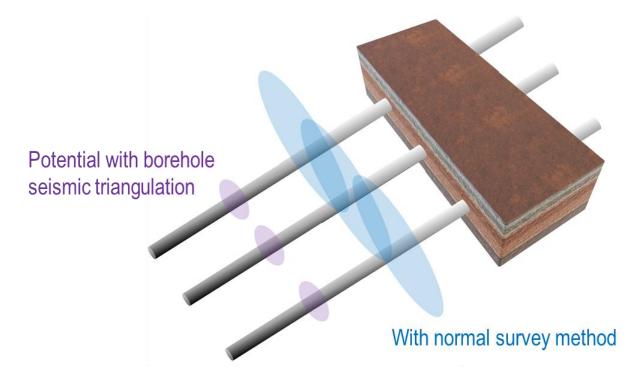
The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Modeling Case Study 1

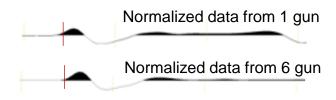



Case Study 2

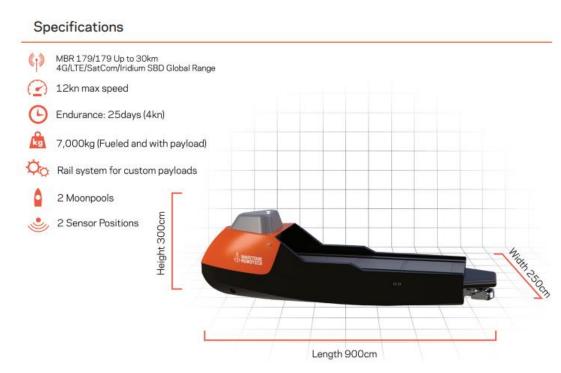
- Wireline acquisition of a walkaway line in a vertical well
 - Same airgun and positioning equipment
 - Downhole WL tool instead of LWD tool
- Flat Layers Overburden
- Walkaway Line considered for 1 receiver position
 - 800+ Source position at surface
 - Receiver Depth: 2675m
- Decimation of WA source position to mimic deployment of autonomous sources
 - 9 symmetrical positions of the sources selected over 1600m lateral deployment


- Calculated receiver offset from 9 points
 - 2.27m calculated vs 0m actual

Animation of seismic Positioning while drilling



Drill horizontals closer together?



Acquisition in the future?

- Wellbore positioning only requires 1 seismic gun. Low noise in high deviation wells. No need for reflection data and high power
- Small HP air supply requirement
- Autonomous vehicle / marine drones could be a viable option

Schlumberger-Private

Conclusion

- Seismic LWD is a mature technology
- Modelling has shown that seismic measurements can reduce lateral uncertainty of the wellbore position
- The technique is best suited to environments with a flat overburden for absolute wellbore position
- Relative wellbore positioning is expected to be more robust if survey conducted in both wells
- First seismic LWD positioning acquisition test in a horizontal well Oct 2022
- Future potential to increase survey efficiency and reduce cost