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Abstract

This theses presents the basic error propagation mechanisms for wellbore position
surveying (often called directional surveying), gives an analysis of well known published
error propagation theories, and gives a detailed theoretical error analysis of commonly
used survey equipment and techniques.

To form a complete tool for wellbore position uncertainty studies, the theoretical error
analysis has to be accompanied by estimated uncertainty figures for the different eror
sources, and by quality control procedures designed to assure survey results in accordance
with these uncertainty figures. The latter two tasks are not part of this theses, but they have
to be solved before wellbore position uncertainty studies can become a practical tool, for
example in connection with risk based decision making and optimal planning of wellbore

surveying programs.

Firstly, the derivation of the basic error propagation mechanisms for classical directional
surveying techniques is presented. The basic error theory is visualised through numerical
examples. The accuracy figures used are typical for what is expected in connection with
high quality surveys in the North Sea region. They are not reflecting uncertainties that
should be expected in connection with surveys taken anywhere in the world.

Published directional surveying error propagation theories, the Walstrom model, the Wolff
deWardt model, and the Instrument performance model, are examined against this basic
theory. It is concluded that available methods, at least their implementation in most of the
oil industry, are too confined to give a realistic picture of wellbore position uncertainties
for many present types of survey equipment and techniques, and for modemn horizontal
and designer wells. It is recommended that a new methodology is developed as soon as
possible. Continued use of the old methods might lead to undesired consequences like
wellbore intersections and loss of targets.

The new method is recommended to be an evolution (improved version) of the Wolff
deWardt theory to reduce confusion and resistance within the drilling industry. It should
be comprehensive enough to give a realistic picture of the position uncertainty for present
and coming surveying instruments and techniques. It is further recommended to develop
standard procedures on how to derive weighting functions and tool uncertainty parameters
for new instruments and mnning procedures. This to assure the validity of the new method
for a longer period. An improved theory is currently under development by the "Industry
Steering Committee on Wellbore Survey Accuracy”. Weighting functions presented in this
theses are forming the framework of this work. It will be implemented in a major software
for wellbore geometry design and anti collision studies.

At last, detailed theoretical error analyses are given for survey equipment commonly used
in the Norwegian North Sea sector. Derivations of weighting functions, which describe
how the different error sources propagate into inclination-, azimuth- and depth errors, are



integral parts of these analyses. Weighting functions are, according to the basic error
propagation theory discussion, very important in the wellbore position uncertainty
calculation. They should be derived with great care. It is especially important to assure that
all singularities are reflected in the weighting functions. This is the case even for error
sources that usually are without significance. This theses is the first known publication,
which gives a complete overview of all relevant error sources, with the derivation of
detailed weighting functions for all major types of wellbore surveying techniques
(electronic magnetic, gyro compassing, continuous gyro and inertial).

Modem continuous high accuracy gyros and inertial systems are not discrete systems like
traditional directional systems (magnetic- and gyro compassing systems). They are
designed for continuously surveying of the entire wellbore profile, and they do therefore
not fit directly into a station to station approach, which has to be used in connection with
the improved Wolff deWardt method. It is in this theses proven that continuous gyro- and
inertial wellbore positioning systems logically can be transformed to discrete systems in
connection with position uncertainty studies without significant loss of precision. This
means that it is possible to implement new wellbore position uncertainty prediction
software with only one internal error propagation mechanism. This is a great breakthrough
compared to what has been believed up to now.

Depth errors are currently handled as proportional with measured depth (MD) in wellbore
position uncertainty studies. It is, in this theses, shown that this suggestion is to simple to
avoid significant errors in the position uncertainty estimation. It is further shown that
uncertainty estimation errors can be avoided if four different depth uncertainty
components (a random reference-, a systematic reference-, a systematic proportional with
MD-, and a bias proportional with MD and TVD component) are used in stead of the one
currently used (proportional with MD). The four components are formed by lumping
together the effect of twenty seven independent depth error sources. Weighting functions
for all these are presented. A use of the total set of twenty seven weighting functions is,
however, not recommended. Especially not in connection with uncertainty predictions,
where many necessary input parameters, like detailed drill string properties, are unknown.
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Introduction

The drilling of modern advanced wellbores (extended reach-, horizontal-, and 3D
wellbores) requires continuous measurements of the drill bit position and orientation in
order to hit targets and avoid collision or interference with adjacent wellbores. The drill bit
position is determined through wellbore positioning techniques, which often are called for
directional surveying. Directional surveying is either run on wireline or while drilling

(MWD).

e

Figure 1-1 Example on an offshore platform wellbore cluster environment where
new wellbores should be planned and drilled without the risk of
collision with exasting wellbores

Wellbore position surveys are, as all other types of measurements, affected by
measurement errors. There are, because of this, uncertainties associated with an estimated
wellbore profile. The uncertainties are dependent on the accuracy of the survey program in
use. There will of course also be uncertainties associated with geological targets, which are
to be hit, and with adjacent wellbores, which are to be avoided. The total accuracy
requirement in connection with a drilling job is the combination of the target uncertainty




and the predicted position uncertainty of the wellbore under drilling. The requirement
might vary during different phases of the drilling. The success in hitting a target or
avoiding collision with adjacent wellbores, is therefore dependent on the availability of 2
prediction tool designed to optimise wellbore position survey programs with respect to
needed accuracy. Up to now, different published error propagation theories like the
Walstrom model [5], the Wolff deWardt model [6], and the Instrument performance model
[7], have been used for this purpose. This theses is, however, showing that non of them are
comprehensive enough for more advanced wellbore designs and surveying techniques.
They do therefore have to be replaced by a new theory. The framework for such a theory
will be given.

Directional surveys are usually affected by measurement errors which are of both
random-, systematic-, and gross- (blunders) error types. The different error types
propagate individually into derived quantities like the wellbore position, They are all
subjected to different error propagation mechanisms. Gross errors are a problem in this
regard. They can not be described in traditional error theory unless their presence are
known, This is impossible prior to a survey, and it is therefore impossible to include them
in a wellbore position uncertainty prediction theory. Any presence of gross errors in a
survey must because of this be avoided if an underestimation of the predicted position
uncertainty shall be avoided.

A study of the directional surveying performance achieved in the field [25], has shown that
gross errors in connection with directional surveys are found at a much higher rate than
expected. Azimuth errors of more than 15° over longer well sections have been
experienced. Many of these gross errors should have been detected if adequate quality
control procedures had been utilised. The study showed that today's level of quality control
has to be improved if realistic wellbore position uncertainty predictions are to be obtained.
The development of adequate quality control procedures is not a task in connection with
this theses. It is too closely related to business policies within the different companies. It
is, however, an important task, which has to be solved before wellbore position uncertainty
predictions can be used in connection with for example risk based decision making,
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Co-ordinate Systems

Instrument System

Three basic co-ordinate systems are in use in this document. It is the local earth based
North/East/Vertical system (NEV), the instrument based xyz- system, and the magnetic
reference system (next chapter). The xyz- system has its z- axis aligned along the
instrument collar axis, which for an error free system is parallel to the wellbore axis. The
x- and y- axis are normal to each other, and in a plane normal to the z- axis. Both
co-ordinate systems are right handed, and tied to each other through three independent
angles, the azimuth (4), the inclination (/) and the high-side toolface (1).

The azimuth is defined as the angle between the north direction and the horizontal
projection of the wellbore axis (z- axis).

—

Figure 2.2-1 Definition of the azimuth (4 )

The inclination is defined as the angle between the local vertical and the wellbore axis
(z- axis).

(/- High-side

Figure 2.2-2  Definition of the inclination ()
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The high-side toolface is defined as the angle between the high-side direction and the y-
axis. The high-side direction is given by the intersection between the plane normal to the
wellbore axis (z- axis) and the vertical plane containing the wellbore axis. Positive
direction is always up from the horizontal plane for non vertical wellbores.

r(r"

Figure 2.2-3 Definition of the high-side toolface (1)

The azimuth, inclination and high-side toolface do not form a unique relationship between
the two co-ordinate systems. The azimuth and the high-side toolface are not defined for
vertical wellbores. This can create problems in kick-off operations etc., where orientation
of the tool with respect to north / east are needed. An additional angle is introduced to
solve this problem. It is call the north toolface (t,). Magnetic or gyro toolface are also
commonly used expressions. Similar, the high-side toolface is often called the gravity
toolface. The north toolface is for a vertical wellbore defined as the angle between the
north axis and the y- axis. For small inclinations, the relationship between the azimuth and
the north toolface is given by

Ta=A+T {2.2-1}

The undefined vertical azimuth and high-side toolface are, how ever, not a serious
problem in wellbore position uncertainty analysis, and the introduction of a north toolface
is not necessary. Large azimuth uncertainties do only have small influence on wellbore
co-ordinates for vertical or near vertical wellbores. A 1000 meter deep 0.01 degree
inclined wellbore with a toolface induced azimuth uncertainty of 5° will for example only
have a horizontal co-ordinate uncertainty of approximately 0.2 meters. This is without
significance compared to the inclination induced horizontal uncertainty, which in this case
usually 1s greater than 5 meters.



2.2

Magnetic Reference System

Magnetic directional surveys are made with respect to the earth based magnetic field
vector, which is linked to the NEF- system through two angles magnetic declination (8)
and the magnetic dip (@) The magnetic declination is defined as the horizontal angle
between the north (V) and the magnetic north, where the magnetic north is equal to the
horizontal direction of the magnetic field vector. The magnetic dip is defined as the angle
between the horizontal plane and the magnetic field vector.

=

N Magnetic

Figure 2.3-1 Definition of the magnetic declination (8)

Figure 2.3-2  Definition of the magnetic dip (®)




12

Basic Error Theory

Both random- and systematic- errors are present in directional surveys. Even gross errors
(blunders) can usually be found to some degree. It is necessary to have some knowledge
about the nature and behaviour of all these three error types, if their individual and
combined effect on a derived quantity (the wellbore position) shall be understood.

3.1 Random Errors

Random errors are per definition errors that can be averaged out through a large number of
repeated measurements. Examples of random errors in directional surveys are

- Unpredictable environmental variations

- Round off emrors

- Orthogonality errors when sensor is rotating

- Mud pump induced fluctuation in mud pressure

It is widely accepted, but not documented in the literature, that most random errors in
connection with directional surveys follow the normal distribution. This will be taken for
granted in the following It means that it is possible to develop detailed theories on how to
estimate or predict how random directional surveying errors propagate along different
wellbore trajectories with associated confidence levels,

In the following, a development of a basic error propagation theory for random directional
surveying errors is presented. The theory is designed for conventional directional
surveying like magnetic north referencing and gyro compassing. More sophisticated
methods must be used for inertial measurements and other direct methods that might be
developed in the future. Only measurement errors are considered in this development.
Mathematical model errors due to the use of a too simple mathematical model, or a too
large station separation, are not included, Their behaviour are well known (Truex [9],
Thorogood [10] and Guo [11]), and can easily be included into the theory if desired.

AX; is the co-ordinate differences vector between measurement station j-/ and j
I;= inclination at stationj €, = random inclination error at station j
A, = azimuth at station j €, = random azimuth error at station j

D, = depth at station j &p; = random depth error at station j

Jf;= the vector function relationships between measurements and co-ordinate vector

at station j
AX; =0 Ly Ay Dy 1, A, D;) {3.1-1}
Page 12 Line 2+3 from bottom co-grdinaftez vector at station j should be the co-ordinate difference

vector between station j-7 and §

nb.no Opphavsrettsbeskyttet materiale
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AX, given on component form is then

AN; =/ S Apsy Dy I 43 Dy ) {3.1-2}
AE, = fe( Ly, Apy Dy Iy 4; D) {3.1-3}
AV =il Lin Ay Dy, 1, A3 D) {3.14}

X is the co-ordinate vector at the last measurement station, station .
X=1IL AX; {3.1-5}
X+ep=L0 [ I 46y, A rvey, Doteng, Ie, ey, Diveg) {3.1-6}
Ist order Taylor series and small errors give

ex = Lo (Off0] €yt Of/0A; 80/ 0D 0
L of ol of oA D) (.17

The Gauss error propagation function is obtained by squaring equation {3./-7}

Iy = [ (Bfi/81 ) e HEf /6 A.) 6.0 HEf /0D Yess |
+ I ([ (fRL+2 A oINS, SELYHEf B o7
+ [ ( 8fJ0AV+2UBf/OANCS - [OAYHOS . 1OA) 184
+ [ (8f/6DY+2(8f/8D)NEf;. JODYHES. (8D 1ep” }
+ [ (31 Ye, +(3f A Ve, 01 /0D, Ve (3.1-8)

Where (6f,/21,)" = (Bf /By (8f, /1) and (8f/SI)Ef/04,) = (8fi/61)*(8f/0A,)T etc.
Sums including terms of the type (g,8;), (8,84), (8;80), etc. where 0 <= <=n, O<=j" <=
n, and J' is not equal to j, are set to zero because of the large number of stations in most
directional surveys (usually more than one hundred) and the data randomness.

oy, etc. is the standard deviation of the associated parameter, and is the expectation of g,
etc. Inserted into equation {3./-8}, this gives

Iy = [ (@ 01) 01 H(8f /B Ae) 0. +H(8f /8D, 0y ]
+I71 { [(effaly+2(af/al)af;. /oLy (8f. /L) 1o
+[( aﬂ ﬁdj-]z'l'Z(Bﬂ ﬁﬁ;}{ﬁ",ﬂ“f 54‘!;}"‘(5};”." a‘{ﬂz ] ‘5.:;'2
+ [ (8f/6D;y'+2(af/aD)(af;. /oD)HEf. /AD)) 165 }
+ [ (8f/ol oy, +(8f/0AN 0, HOf/ED,Yop, ] {3.1-9}

I, is the co-variance matrix of the estimated co-ordinate vector X at station n. The
co-variance matrix shows how random errors in the individual directional survey
measurements propagate into an error in the estimated vector X. The co-variance matrix
can more easily be expressed as follows

Page 13 Equation (3.J-8} line | &pel= [ (8/800) % (81 /8d0) ¥ e2 HEf /8D q) 26k, ]




i' 2 2 :'i
Owv Ox Ow
Ly. = Oy O O

i.'-'-'fw"‘ T UWZJ {3.1-10}

o = [(8hf01) 015804045 +(8f/ODY o, |
+ E50 { [(BABLY+2(eNBI )8 g /BLYH(E g LY 1 04
+[ (GfJOAN+2(BffCANB g 1BAYH (g 1OAY 10
+ [ (0fyfOD)+2(0f, JoD Yy OD) @iy /D) 1057 )

+ [ (8hdBLY 01+ 64,V 0 4 +(8f/ 8D, Y op." ] {3.1-11}
Ove = [(8flOI )OS/ 010010 H 8l B4 o) (8 B A0 16 H(Efr @D NS/ 6D )o )
+ I {[(Bhy/BL)6fe/BINH (B B8 e i/ BLYHBfef LN iy BT)
+H( O OIN ey /O 0 H(8// A NS/ BA Y80 A)
H Oy s/ OAH( O/ QAN Ofge 1/ OA ) H g/ BA NS i /A 0,7
H(EAW/ED)(8fe/ 0 D8/ B D) Oy s/ B D) H(8ef D) Ef 1/ OD;
H Dol aDJ](afﬂ*f‘f aby)] Gn,rz
+ (8L O B0 +( 0l 04N el OANT 4™
@£l 8D, )6/5/ 8D, )op,] {3.1-12}
Etc.

Oy is the variance in the north direction, and o,;" is the co-variance berween the north
and east direction. The co-variance might also be expressed as follows:

ONe = O Oz PNE £3.1-13}

where pyg is called the correlation coefficient between the north and east co-ordinates. A
correlation coefficient equal to zero means totally independent quantities, while a
coefficient equal to one means total dependency.

For a straight wellbore consisting of # stations with equal station separation, and repeated
measurements with the same individual accuracy, equation {3. /-9} reduces to

To=n { (@f8IPHEfOI-Y+2(1-1n)8fI8INafo1))o
+ [(8f10AY+(8f184-)+2(1-1n) 8f16A) 61640 2
+ [(8f18DYH3f13D-y+2(1-1/n) 318 D)(8f18D-)]c,* } £3.1-14}

Where /-, 4- and D- is the inclination-, azimuth- and depth measurement at the previous

station. f=f,, (8f/ol) = (6f./el), (6fiol-) = (6f/el,), etc.

Equation {3./-/4} shows that the effect of random errors in traditional directional surveys
are proportional to the square root of the number of measurement stations. Random errors
will therefore not be averaged out for repeated measurements at consecutive stations as
they will do for repeated measurements at the same station,
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Example 3.1-1

Figure 3.1-1 Skeich of wellbore profile used in this example

To visualise the effect of random directional surveving errors, a 6.0 km long straight artificial wellbore is
analysed. The wellbore is directed due east at 60° inclination. Measurements are taken every 30 meters
which almost is a standard for measurements while drilling (MWD), and wellbore co-ordinates are
computed with the minimum curvature method. The following parameters are then valid for this survey

n=200,  [=I=60° A=A=90°, D,=j*30m, j=12,...n

[ (DADAV2IsingI-)c0s(A-)+sin(Deos(4)] | fo 1
S LA A D, D) =F* [DADAV2sin{i-)sin(d-)sin(fsin(4)] = 25981

LIDAD W 2Hcos(-yreosh) ] Lis |
F is the minimum curvarure multiplication constant, which for a straight wellbore is equal 1o ong, and
=1, A-=A, DfD;)=dD=3m

Partial derivatives of the minimum curvature function for this wellbore are

r%mif)ms{/l] 1 [0 1
@nery=(afieh = 5 cos(Dsin(4) 7.5
L-2sin() ] |.-12.990]

[~ sin(Dsin (4) | [-12.9%]

(@fiddy=(afod) = Tsin(Doos(d) = o
Lo ] lo ]
[ sin(Dcos (4) | o 1
(@ffieD) = sin(N)sin (4) = 0.886
Leos(D J los |

(8ffeD-) = -(afian
The elements in the co-variance matrix will then be
Gied = (An-D)(Ef/EN S HBNBAV s A 112[(8/6DYa,7] = 134654c,]

Oy = (dn-D) (B BI o/ HBf/BAY 0, J+2(8f/8D)Ys,’] =4488T0+1.570,
0w’ = (n-2)(@f/ol e H0f/34V 0/ 142{(8fi/eDYe,’] = 134654040 50,




16

S’ = Un-2)(B/JONNEfYaT)o; HAf/OANE W8 A)S, 1+ 2(8//8D)ES¢ED)s,"] =0

o = (An-2)[(Bf/81NEf/eDe, Haf/BANB)8A)o, 1+2(8//8D)Ef/6D)o,]] =0

op’ = (An-2)[(Ef ONNEf/oNe HBf BANSSIBA) 1218/ 2D)0T/8D)o,]) =-TT7450,+0.8%0,"
Magnetic measurements while drilling (MWD) is a commonly used wellbore position surveying technique.
Itis because of effects like time dependent variations in the earth magnetic field etc. not rated among the
most accurate of today's surveying techniques. It is difficult to give global uncertainty estimates /
predictions for the three different MWD measurement types. The uncertainty figures will be dependent on
both nmning conditions and quality control procedures in use.

26;=03°%, 20,=20° 20,= 0.2%of the unit length (0.06m)

are an example on commonly used MWD uncertainty figures (#5% confidence) in connection with
wellbore planning in the Norwegian North Sea sector.

If we assume a survey where these figures are valid, and where all error components are random, which of
course is not the case, we get the following co-variance matrix

[s10 0 o ]
.= 0 031053
lo 053 ow92)

Maocimmum uncertainty is as expected parallel to the nornth axis, and 6,,,= 6.40m

North seeking gyro measurements in vertical- and slightly deviated wellbores are rated among the more
accurale surveying techniques. It is also here difficult to give global uncertainty figures.

20,=03° 20,=045% 20,= 0.2% of the unit length = 0.06m

are an example on commonly used north seeking uncertainty figures (95% confidence) in connection with
wellbare planning in the Norwegian North Sea sector.

If we, similar to the previous case, assume a survey where these figures are valid, and where all emror
compoenents are random, we get the following co-variance matrix

[2080 o ]
IL,= 0 031 053

lo 053 092 ]

Now we get 2 maximum uncertainty o= 1.44m, which also is pointing to the north.

Gross Errors

Gross errors, which often are referred to as blunders, are usually caused by human faults
or instrument failures. Examples of such errors in directional surveys are

- Use of wrong initialisation parameters

- Use of wrong calibration constants

- Instrument used beyond operational specifications
- Single channel failure in multi-channel equipment
- Memory or processor error in the computer




33

17

Gross errors are dangerous. They may range from very small errors without any
significant effects 1o major errors that will be destructive to any survey. It is impossible to
predict their appearance, and they are therefore usually not included in error propagation
theories. Gross errors should be identified and corrected for by dedicated quality control
(QC) procedures. None of the published directional surveying error propagation theories
seem to include gross errors like human faults and instrument failures. They take it
probably for granted that adequate QC has been applied to the measurements to secure
against the appearance of gross errors at a very high confidence level. If large gross errors
are present (probably the case in many existing directional surveys), the wellbore position
uncertainiy estimates obtained with these methods will be wrong and the error propagation
models are not valid.

Systematic Errors

Systematic errors are all remaining errors when gross- and random- errors are removed. A
systematic error has the same size, sign or geometric dependent nature for a given number
of measurements. This means that some gross erors, like for instance use of wrong
calibration constants, are systematic errors for all measurements of a given type. It is,
however, not usual to include this kind of gross errors into the systematic error term, as
opposed to for example residual errors after calibration, which are systematic errors as
long as the same instrument is in use.

In directional drilling, some errors might be systematic at one level and random at another.
The most usual case is errors that are systematic in one survey (at least in large parts of
one survey), and random between different surveys.

Examples of errors that are systematic in one survey, and random between different
surveys, are

- Reference errors in connection with free gyro surveys
- Residual errors in magnetic declination corrections
- Drill collar sag for MWD instruments

Examples of errors that are systematic for all surveys in a given region are

- Magnetic measurements without magnetic declination corrections
- Errors in the geodetic reference network

Error propagation of systematic directional survey errors
T, = systematic inclination uncerntainty
T, = systematic azimuth uncertainty
Tp = systematic depth uncertainty

AX; + g =f{ Lty A, Dprmg, Iy, A, D) {3.3-1}



Reduced st order Taylor senies gives

Ny, = (Gff0L.H8f/0A, ) HOf/OD; ns

+Haf/almH@f/ A, ~Ef/eD)n, {3.3-2}
Iy = {ZL@f/eLumHf/odumHef/eD: o
+Haffelm+affedm Hef/oDms 1} {3.3-3}

Sums including terms of the type (n;m;), (myn.), (MyNo-), etc. will not cancel out because
of the systematic effect. They can therefore not be set to zero in this case.

Equation {3.3-3} shows how systematic errors in the individual measurements propagate
into the esiimated co-ordinate vector X

For a straight wellbore consisting of n stations with equal station separation, repeated
angular measurements with the same systematic errors, and depth ermor proportional to the
measured depth, {3.3-3} reduces to

Ze = {nl(@ffeImH(Efle - HeffleAmH(EflGA-m.]
Horn)2@flED)MyH(r-n)2(&f16D-Jmp ) {3.3-4}

Where f=f,, (8f16]) = (8f,/01,), (6f18]-) = (8f/&l,), etc., and 1y, is the systematic depth
measurement uncertainty between two consecutive stations.

Equation {3.3-/} shows that the effect of systematic errors in traditional directional
surveys are proportional to the number of measurement stations. This is a much more
unfavourable error propagation than the random error propagation, which in chapter 3.1
where proven to be proportional to the square root of the number of measurement stations.
There is, however, a basic difference between random and systematic error propagation,
that leads to the conclusion that this larger emor propagation rate not necessarily implies a
greater resultant error. The reason is that systematic error propagation can be sign
dependent while random is not. Equation {3.3-3} shows that a change in azimuth quadrant
from 2 to 3 or 1 to 4 or visa versa, some distance out in the wellbore, will lead to a change
in the sign of the upcoming systematic error terms to be added, compared to those added
prior to the quadrant change. The absolute value of the resultant systematic position error
will therefore start to decrease. It might in fact return back to zero before it start to grow
again, if a 180° azimuth tum is performed. This behaviour applies, according to the
discussion later on, to some systematic error terms like the gyro reference error, but not
for others like the drill string magnetisation error term.

Example 3.3-1

The wellbore and survey frequency descnibed in the example 3.1-1 is also used to visualise the effect of
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The elements of the co-variance matrix is now given by

Ex = {2((E8 I HEeAMIHEN D)

The same MWD uncertainties (95% confidence level) as used in example 3.1-1 are also used in this case,
but they are now assigned to the systematic emor class. That is

2n,=03°% In,=2.0° 2n,= 0.2% of the unit length
which gives the following co-variance matrix

[g2211 -11947 9623 ]
£, = -11947 1736 -1398

losz3 -1398 1126

Maximum uncertainty is parallel to the north axis (normal to the wellbore path), and 6,,= 90.7m, which is
more than ten times greater than the similar random uncertainty of 6.40m.

A morth seeking gyro survey where all errors are assumed to be systematic, and where the different error
sizes are equal 1o those used in example 3.1-1, gives

=03 2n,=045°, 2n,= 0.2% of the unit length = 0.06m
The following co-variance matrix is then obtained
(#1170 2691 2167 |
T, = 2691 1736 -1398
L2167 -1398 1126 J

Maximum uncertainty is again to the north, and given by 0,,= 20.4m.

Example 3.3-2

(" w

Figure 3.3-1 Sketch of wellbore profile used in this example

Let us now look at how systematic exrors are behaving in a 6.0 km long constant 60° inclined wellbore that
starts due east, and tumns due west after 3.0 km. Measurements are like in the other examples taken every
30 meter, and wellbore co-ordinates are computed with the minimum curvature method. The following
parameters are then valid for this survey
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my =100, =60 A, =907, D,=*30m wherej=1,2, ..., n =30m,
n;= 100, A= 270°

8fioA, = -6f1oA~ -84

Iy = (nny (20876 0m H@ffe Dm,l*

A magnetic MWD-, or a north seeking gyro survey with uncertaintics as defined in example 3.3-1, will
both result in the same co-variance matrix. It is given by

[0 o o 1

T, = 0 173.6 -1398
lo -139.8 1126 ]

The north UNCENAINTY Ty = 0, which is significantly less than the similar random uncertainty of
Tpoems = 6.40m. The random error estimate is here identical to the result in the example in chapter 3.1.

These two examples show that the accumulated effect of systematic errors are extremely
dependent on the wellbore geometry, and that the current practice, within most of the
directional surveying industry, to disregard random errors from having any significant
effect on the final result, might lead to serious underestimation of the estimated position
accuracy.

The azimuth error due to drill string magnetic interference will, according to figure 3.3-2,
always be pointing to the north on the northem hemisphere. The systematic magnetic
interference error is because of this dependent on the azimuth quadrant in the same manner
as the emror propagation function. This is the case, even if the magnetic measurements are
corrected based on a priori knowledge of the magnetic field, where it is impossible to tell
whether the corrected vector is pointing to the north or to the south.

'8 East Bound Wellbore West Bound Wellbore

Maenetic north : M i R— . Magnetic north

Figure 3.3-2 Magnetic azimuth emors for east and west bound wellbores
caused by drill string magnetisation
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fxample 3.3-3

We shall now see what effect we get by taking the real magnetic drill siring magnetisation error nature into
account for the wellbore described in example 3.3-2.

For a magnetic MWD survey, the systematic azimuth error term is made up of two significant parts, the
magnetic declination error and the drill string magnetisation error (see chapter 5). The total azimuth error,
which is used in the uncentainty calculation, is the root sum square of these two components (plus a few
other minor components).

Zijsling [30] is estimating the global declination uncertainty, with respect to a world declination chan or
model, 1o 1.4° 2. This figure is based on the use of an updated version of the map or model, The present
surveying practice is, however, not always securing this. Older charts / models are occasionally in use. The
correct declination uncertainty is therefor probably slightly bigger than 1.4°. A commonly seen estimate
for the magnetic declination uncertainty is 1.5°,

Assuming a tofal azimuth uncertainty of 2.0° (2c) is then giving the following uncenainty components at a
93% confidence level

21,.4= 1.5° (declination) , In,..=1.3° (drill string magnetisation)

Because the drill string magnetisation part is azimuth quadrant dependent, the current wellbare will have
the following combined azimuth error terms and partial derivatives in the two wellbore sections

2, = 2.0° (due east), =077 (due west)

8f18d, = -8184,=-a154
Combined, this gives

Ly = {n A 2[(Bfi8Im HEfEA M I HEAE DM 5}
iy 2[( AN HEMEA, ) HENEDM,} ¥

which gives the following co-variance matrix

[12120 <4587 36951
T.= 4587 1736 -139.3

L3695 -1398 112.6]

Maximum uncertainty is again to the north and given by = 34.8m. This is dramatically different from
the zero north uncertainty in the previous example.

Examples 3.3-1, 3,3-2 and 3.3-3 show that systematic errors are difficult to handle in
wellbore position uncertainty studies, and that a detailed mapping of possible inclination-,
azimuth- or high-side toolface dependencies are necessary to obtain realistic position
uncertainty estimaies,

nb.no Opphavsretsbeskytiet materiale
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Combination of Systematic and Random Errors

The total error budget in directional surveys (all errors associated with a survey) consists,
as already mentioned, usually of both random and systematic errors,

The error propagation for such a combination is

ﬁx;"'sﬂ-t’.r"""lm =j;{ Ijiﬂﬂ'-}m: Aj.,l'"-s,lj;?m,‘, Dj—fﬂﬂj{%
ey, diteny, Diten o) {3.4-1}

A reduced 1st order Taylor series gives

Iy = [(@f /1) 0, +(8f0Ae) 0 HEf/EDs) 00 ]
+[(@f /8101, Haf/OA, 0 +(Ef /0D, Yop,]
+250 {[@f/eLy+2(0f/ 01O JOLYHBS oL ] o)
+[(ef/o4 J)E—FZ(@_,I?@A [ WEf. /8A)H GBS /64 J_)z] i:!l'_“‘,-:l
+[( afjaﬂ'ﬂz-ﬂ(ﬁﬁ oD )(af../oD)YHES,. ,J’ED_,-}Z] e p'.-: }
H I @8l mH(8f/e 4, mHEffe D ng
+(@ffelm, +(8f/4m,HeffeDmp]} {3.4-2}

Sums including terms of the type (o,0y), (5,9.), (G:55), (Gyn), (o), (05 Mo). (4110,
(G4, (B4Mp), (GoM1). (GoM.), (O5Mp), ete. are set to zero because the large number of
stations and the data randomness,

The first part of this vector equation is identical to the random co-variance matrix
previously described, and the second part is identical to the systematic co-variance matrix.
The introduction of both random-~ and systematic errors in a directional survey error
analyses, is therefore basically the same as a summation of two independent covariance
matrixes, one random and one systematic co-variance matrix.

EX= E.\'.I:r_'_ Ex'.“ {31-4"3}

For a straight wellbore consisting of » stations with equal station separation, and repeated
measurements with same random and systematic errors (the systematic depth error is
proportional to the measured depth), equation {3.4-2} reduces to

L= n{[(8fleIyHeffe I-Y+2(1-1/n)} afieN(afie)]e;?
+[(8f10A)HBf164-Y+2(1-1n) 8fioA)fieA-)]o,?
+[(BflaDY+(8fla D-y+2(1-1n)(8fiaD)aflD-))os’)
+{n[(ofielm, Hafil-m,+HafieAm.HEfidd-m,]
HP+n) 2 Ef1o DMy -n)2(3f8D-mp ) {3.4-4}
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Example 3.4-1

To visualise the effect of combined random and systematic errors, let us once again look at the wellbore
described in example 3.1-1, but now under the assumption that the resultant errors for the north secking
gyro consists of equal parts of random- and systematic angular errors and systematic depth emrors
proportional to the measured depth.

20,=021°, 26, =0.32°,
2n,=021%, I, =0.32°, 2n, = 0.2% of the unit length

These uncertainty figures used on the wellbore desaribed in example 3.1-1 will give the following
CO-Variance matrix

Zp= Epat Iy
(1106 o | (2102 -1567 944 | [2113 -1567 944 |
I,= 0 02 03 + -1567 1168 -703 = -1567 1170 -706
Lo 0305 ] log4 703 424 | |944 -706 129 |

Maximum uncertainty o= 14.5m, and is again 1o the north. This uncertainty is aboutl 70% of the similar
uncertainty estimate obtained as if all errors where systematic.
Example 3.4-2

If we in the same survey as described in example 3.4-1 assume that the random errors are ten times greater
than the systematic exmrors, we get the following situation

26,=0.3°, 20, =0.45°,
2n,=0.03°, In, = 0.045°, 21, = 0.2% of the unit length = 0.06m
[210 o 1 T[42 25 331 [63 -125 33
I,= 0 03 05 + -125 372 100 = -125 375 95
lo 0509 ] L33 100 27 | |33 95 36 |

Maximum unceriainty o= 6.2m, and is this ime directed to the east.

Based on equation {3.4-3} and examples 3.4-1 and 3 .4-2, it is possible to draw the
conclusion that inclusion of random errors into the systematic error term, only leads to
over estimation of the real uncertainty when random errors are of the same magnitude or
are greater than major systematic errors. Random errors, with exception of those that are
grater than major systematic errors, can therefore usually be omitted in wellbore position
uncertainty analyses. This is the case for all standard wellbore designs, but not necessarily
for modern designer wells where the resultant effect of a specific systematic error source
on the wellbore position can be near 1o zero in minor wellbore sections, It is, however,
very unlikely that all systematic error sources effective in a given survey will show this
kind of behaviour, There will usually be at least one systematic error source that is not
sensitive to azimuth changes in this manner.
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Consecutive Survey Sections

A total wellbore survey is often made up of consecutive independent directional surveys.
In such combination surveys, we might have the following types of errors

- Emors that are random for all surveys

- Errors that are systematic for all surveys

- Errors that are systematic for one survey, and random between the other surveys

- Errors that are systematic for a given number of surveys

- Errors that are systematic for one survey, and random between some of the other
surveys

The error propagation for a combination survey can be described by the following set of
parameters

;= random inclination uncertainty at station j for survey k
0= random azimuth uncertainty at station j for survey &
op,; = random depth uncertainty at station j for survey &

A; = systematic inclination uncertainty for one survey, random between surveys
A, = systematic azimuth uncertainty for one survey, random between surveys
Ap =systematic depth uncertainty for one survey, random between surveys

£, = systematic inclination uncertainty between a given numbers of surveys, else zero
£.4 = systematic azimuth uncertainty between a given numbers of surveys, else zero
€. = systematic depth uncertainty between a given numbers of surveys, else zero

.= systematic inclination uncertainty in one survey, random between a few surveys
.. = systematic azimuth uncertainty in one survey, random between a few surveys
Cep = systematic depth uncertainty in one survey, random between a few surveys

T = systematic inclination uncertainty for all surveys
T, = systematic azimuth uncertainty for all survey
Tp = Systematic depth uncertainty for all surveys

k, = the number of independent surveys

m, = the total number of different combinations of errors that are systematic for a
given number of surveys (£)

m, = the total number of different combinations of errors that are systematic for one
survey and random between a limited number of surveys ()

k, = the number of measurement stations in surveys

= the total number of measurement stations

The position co-variance matrix is then given by
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Ty={ZL{ (5ﬂ5-’;.:1[%+?w+£:='| E st L ot Cotiersn U]
HOf/OA )04 A I BT E ot Gt aenia M)
H D, M0 Aot E o EbacitE ot Ceacitip)
HBfOD) oy Mt Z o Ectaenia™ E o et scna U]
-&-(Eﬁﬁtij}[nﬁ'f"lﬁzz’, et Z ot GermesaaitTi4]
+( aﬁaﬂ.u'][ﬂnj+la+zﬁ1 E.;m.m’rﬂf;.’, Cpunitmn] } 1 {3.5-1}

Where sums of the type (5;5,), ....., (O5Tm), (G510, <oy (G As), (G11), oners (Timin)s
(655}, - (Oplmap), etc. can be set to zero because of data randomness.

For a large number of independent consecutive surveys, also sums including terms of the

form (A, ..., (Moho), (M) ovs MoGmands (ABar), <oy hoBminhs (MG, s (Apfman),
(E:€0), -y (EmipCran), etc. might be set to zero, This leads to the simplified equation

= [(8f/ Efﬁ}zcmzﬂ afféA 9]20 JgﬂfaﬂfﬁDaﬁdmi

+H(&f/8l) 0, +(6f/84,Y 0 .. HefJeD,Vou.]

+ EL {[(Bf/eLy+2(8f/BLXaf,- oLy H( oS- /el F] o)
+[(E!J|"'JE:LA!‘r ’+2(Eﬂ5dj}{6)§. ,fﬁr!,—}ﬂﬁfj* ,fﬁA,}’] Uj
+[(5ﬂ31:})3+2(6ff’51)j}[aj}. # EDJ-)+(6J; ,FEDI-)I] crnf }

+ I (L (@Ol IS8 A M HBS/2D, )

HOfYBIAHLJOAINHBf/ED Yo}
+{EE 0 (G000 Bf /84,0, HEf/3D, )
HAfYBLN it (Sf/0A) . HBF/BD Y )1
b R
03l el () 715) A R o 7Y Wy L ) 5) 0 ) i
HOSJ BN (/O AN i (OF/EDYora )V
+ {{EL, [(Bf/01)eur(Bf /8 ALY HOSED, Yoo
HOf LY B/ BAY . Hf/OD)E o)}
. SR
+ (S0 [(Bf/BL, Vomir (O OA YeomsH(BF/OD, Neomip
S JOLYE mir (B OAVe i HOF/ODYE i)
+ (T, [@f/81. ) Bf/BA, ) +@Ef/8D, )y
HaffelmH(Ef/8A M HBf/eD)m1) (3.5-2)

The three first lines of this vector equation system is identical to the random co-variance
matrix previously described. Line four to seven is the co-vaniance matrixes of each of the
error terms that are random between surveys. The last four lines are the resultant
co-variance matrix from all error terms that are systematic between some or all surveys.
The equation 1s only valid if non-existing uncertainties are set to zero. The overall
uncertainty can then be looked upon as a summation of different co-variance matrixes.

For a straight wellbore consisting of &, independent surveys each & stations long, and a
total of n stations, with equal station separation and with angular measurements with the
same random- and systematic- errors at the different levels, and depth errors proportional
with measured depth, equation {3.5-2} reduces to

ol il ey
- ; . c friy 1 e
Page23  Equation {3.5-2) all ... Zl (.. shouldbe ... Z%5™
5 LS

A
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Zy=nf [(ﬁﬂﬁf}zﬂaﬂﬁf -]2+2( 1-Un)&flan(cfial -}r]-:!;2
+[(afl BA)iﬂéﬂﬁA-fﬁQ( 1-Un)(EficA)afieA-)]a 2
+[(Bf1ODY+H@f1dD-F+2(1-1nYafIBD) B3 D)oy
Sk (kLGB HOfIBAN HBfIBAN]
PR DY (P-RY2AGMIE D)
+b, (KL(BIBIN,HOIDIIC,HONIGAN, HOfIOAN, ]
HEH)I2ABfIBD)C + F-RV2AEFID I o)
2 S
b (KB TON i OIBINeosr IO AY s HOFIOAN ]
HEHRY2BfIEDY i P-RY2SIIEDYom )
+{a, ((BIODEHOfIBI e+ (BfIBAYE , H(OfIAe ]
PR OfIBDYE (PR 2B fIBDE 1o}
2 (U(OfION i H OO Ve H( OB AN (1A V]
P+ SfIBDYE i+ PRV STODVE i)
sn{(Bf1NmHafi 1Mo A HafEAm,)
oY BfIED Mo Hor-n) 238 D-mp ) {3.5-3}

Qyy ooy Oy, By, .., By is the number of surveys where the associated error is present.

Published error propagation theories do not give any description on how to handle this
problem. An analysis of two major commercial software packages has shown that they are
adding systematic error sources randomly between surveys regardless on the actual error
propagation charactenistics. All errors are therefor included in the C error type. Equation
{3.5-3} is then simplified to

Ex = by { MBIV H IO, HAfTAN)
Y2 fIODYG 5 (P 2BfIBD-Yp )
+ b (10D OOV M OTOAY e HONIOAN ]
HICHRY2( 3113 DY (PRV2(Bf18D-Yorm ¥ £3.5-4}

The uncertainty predicted by equation {3.5-4} will always be less than what is predicted by
equation {3.5-3} as long as significant systematic effects between surveys are present.

fxample 3.5-1

We shall again look at the wellbore profile described in example 3.1-1. This time it is assumed that the
wellbore is surveyed with four independent consecutive surveys with equal length. The first two sections is
surveyed with the same north seeking gyro, and the latter two is surveyed with the same magnetic MWD,
The following measurement uncertamty budget can be created if the same running conditions and quality
control procedures are assumed.

=2 = =2 = 1=03°
25, =25, =28, =20°,
28,,=2L,,=20,=045",

W

HE

u=0,
Lu= 0,

E"l
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2In,=0.2% of the unit length,
n=200k=50,k =4, al =a2=bl=h2=2,

The following position co-variance matrix can then be created

[s2100] [2067.1 -599.0 4825 | 21192 -599.0 4825 |
.= 0 00 + -5990 1736 -1398 = -5990 1736 -139.8
lo ool L4s2s -139.8 1126 | L4825 -139.8 1126

Madmum uncertainty is to the north and given by g,,,= 46.0m.

Figure 3.5-1 Survey program used in this example

Example 3.5-2

We shall look at the same survey program as described in example 3.5-1, but now with the current practice
of handling consecutive surveys as if they where random with respect to each other. This gives the
following uncenainty estimates

20, =20,= 0.3%

2,,=2.0°,

25, =045,

2, =2,.=10.2% of the unit length,

[1085.7-183.4 1477 |
I, = -1834 434 -350

L1477 350 282 |
Maximum uncertainty is now o= 32.9m.

This is very different from the result in example 3.5-1. The north uncertainty is reduced from 46.0m in the
complete study to 32 9m in the simplified study. This represents an under estimation of the uncertainty of
28%.
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Redundant Survey Programs

For longer extended reach- and designer- wells, it is a common practice to take multiple
wellbore surveys, and / or to make overlapping sections between adjacent surveys as part
of the QC procedure. This means that it usually are redundant survey information present
in connection with these wellbores. The redundant information can be used for
improvements the wellbore position estimate. Especially when different instruments,
different bottom hole assemblies etc., are used in the different surveys. The value of
redundant surveys taken with the same instrument are, however, more questionable. The
effect of significant error sources which are systematic between surveys, for example the
magnetic declination uncertainty, can then usually not be identified and removed. Today,
redundant data are not used for other purposes than to identify gross errors. No statistical
adjustment theory designed to make use of the redundancy has up to now been published,
The final representation of a drilled wellbore is usually one single survey, or a few
consecutive independent surveys tied together.

A simplified example based on a wellbore surveyed with m identical surface to bottom
(TD) surveys will be used to prove that the current practice might produce position
estimates with greater uncertainties than necessary. The different surveys are taken with
different equal instruments, and each survey consists of n stations. The different
measurements are assumed to be averaged at each station, and the averaged measurements
are assumed to be used in the well path calculation. The following error terms are then of
interest

g;; = random inclination uncertainty

O, = random azimuth uncertainty

Op; = random depth uncertainty

Ay, = systematic inclination uncertainty that is random between different surveys
A; = systematic azimuth uncertainty that is random between different surveys
Ap; = systematic depth uncertainty that is random between different surveys

1) = systematic inclination uncertainty for all surveys

Ty = systematic azimuth uncertainty for all survey

Mg = systematic depth uncertainty for all surveys

and the following error propagation will be valid

Inilie Lodey ELD Ifde IpAn IR.D,
M-_—fﬁ *=lm-"-, i'lmr' o e P e el k=i .ri] {3.(5-}}

Combined with equation {3 5-2}, this gives
I (el :}2 % Hefjod.y = s Haf/oD,. )= 2
+arjoLy ”+(5f;’5+4!)“ *’+{6‘ﬂoﬂ sy
+ (T @ffal) ﬂaﬂeA, Be= +(aﬁan,u3
+(afyal, },,_ Hafjoa) L +{5f! D)= ]}*

+{ 2L, [ef/er, J-:ﬂaﬁf?‘ﬁﬂhlwﬂaﬁa By
+Haffolm+(@f/o4Am Haf/eDny, ] {3.6-2}
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For a straight well consisting of » stations with equal station separation, and repeated
measurements with same random and systematic emrors (systematic depth errors
proportional to measured depth), equation {3.6-2} reduces to

E.= n/m {[(Gf18Iy+(6fi]-Y+2(1-UnX&fic)&fie )]s,
+(@f8AY+{GfI6A-Y+2(1-1n) GfIGANGfT6A-)]o
+H[(8ffeDy+{afieD-yY+2(1-1in)(&fieDX&flc D-)]loy )

+ wim {[(8f1eDAHEMBIIAHBIGA HBfI5A-I,)
+Hr YU BAEDY A -nY2UBED-Y
+m {[(éffehmH(efiel-mHEfloAmHEff6A-n,]
+(r+n)2( 618D+ -n) 2(6fIED-n, {3.6-3}

Equation {3.6-3} shows that the contribution to the overall uncertainty from all errors
which are random between different surveys, are reduced with one over the square root of
the number of identical surveys. A use of the redundant information in multiple surveys
can because of this represent a significant accuracy improvement, if random between
surveys erfors are major contributors to the wellbore position uncertainty. This is usually
the case when different types of surveys, or different instruments of the same type, are
used. For magnetic MWD, this is only partly true because of the presence of significant
systematic between surveys errors (see chapter 5). An introduction of an adjustment theory
into directional survevs has because of this a great potential as a low cost tool for accuracy
improvements. The redundant measurements are already taken, and the additional cost is
only a more complex data handling. Another great advantage with an adjustments
approach, is a possibility to estimate some of the systematic error terms. The magnitude of
these systematic uncentainty terms might then be reduced compared to the global numbers
usually used in wellbore planning. This will reduce the predicted uncertainty estimate at
the planning stage, which of course will be beneficial to the operations through a reduced
need for high cost directional surveys, and a reduced number of closed in producing wells.

Horizontal
-» wellbore
trajectory

i First MWD survey

.
-

Kening youe ajduee oakny >

-
-
B

Figure 3.6-1 Example on redundant survey program
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Example 3.6-1

Let us once again Jook at the wellbore described in exangple 3.1-1, but this time under the assumption that
the wellbore is surveyed with four identical north seeking gyro surveys. Assuming same running conditions
and quality control procedures as in example 3.1-1 gives the following measurement uncertainties

n=200 m=4,
2h,=03%  23,=045",
2= 0.2% of the unit length,
This leads 1o the following co-variance matrix

L= n'lm [28ff6Dp.#2Efl8 A+ (816D m

[1042 <01 695 | [o o o 1 Ti042 <01 695 1
T,= 401 154 268 + 0 283159 = 401 437 -108
leos -268 463 ] lo 15990 less -108 553 |

This gives a north uncenainty of 6= 10.2m

Example 3.6-2

If the wellbore is surveyed as in example 3.6-1, but only represented with one of the four surveys (the
current practice), the uncertainty is given by

2m,=03°,  2n,=045°
2n; = 0.2% of the unit length,
Iy = m [2EflaImA2(EfoAm, HeflieDm)

[ 417.0 2691 2167 |
T.= 26011736 -139%8

| 2167 1398 126 |

This gives an north uncertainty of oy, = 20.4m, which is twice as big as the similar north uncertainty when
all four surveys where used as in example 3.6-1.
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Weighting Functions

It was in chapter 3.3 shown that the effect of systematic surveying errors on the inclination
and the azimuth might be very dependent on wellbore geometry. The geometrical
dependency is not only related to directional angles, but also to geographic location. The
dependency can usually be described by one ore more of the following parameters

- azimuth

- inclination
- toolface

- latitude

- longitude
- elevation

Error sizes might also vary with other factors such as

- Bottom Hole Assembly (BHA)
- temperature

- pressure

- elastic properties

The way these factors affects the measurement accuracy, is known from physics or can be
determined through tests, and can be expressed as error propagation functions. Wolff and
deWardt called such functions as weighting functions. The Wolff deWardt terminology is
well known within the drilling industry, and will therefore be used in the following. The
actual measurement uncertainty might therefore be expressed by a weighting function and
a reference variance

o° = w(dependency factors)” G, {3.7-1)
where ,° is the reference variance and w is the weighting function,

Weighting functions applied to a single directional survey with combined systematic and
random errars leads to the following error propagation properties

Iy =[(@f/el, Uy O (B 5:[0]:!{4;0"”:'!'( 3f1/8D Y upg Opy |

+(8f/01Yu, 0, H(8f/04,Vu,'0 . +(8f,/8D, ) up Op. ]

+ 0 {8/ LY +2(f TN OLYH O L) Vo)
+H{(8f/8A4)+2(8f/8A)(8f. /64 (S 1/0A Yo,
+{(8f/eDy+2(cf/oD)éf ../ 6D YHaf;../aDy)] :{Df d,_,f }

+{ 2;1 [(@r/el, yw,.mH(ary 531—:)""&-;"14"‘(@5"’ E'DH]WD;-ND
H@fJal)wynHEI/oAYw g, H@fJOD)woms))? 3.7-2}

iy is the weighting function for the random inclination error at station j, and
w,, is the weighting function for the systematic azimuth error at station j, etc.
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For a straight wellbore with equal station separation, and constant measurement accuracy
(systematic depth errors proportional to measured depth), equation {3.7-2} reduces to

Iy =n{[(fieIV+(afial-y'+2(1-1n)( BfielNafiel-) Juc}
H(BAIBAYHBfIOA-V+2(1-1n)BfDANBIOANu 6 2
+{(BABDY+EFaD-F+2(1-1 )16 DYBAED-) s,

+{n((@ffaDwn, HSfIe1-ywin, +HafloAYwn HafloAwm,]
o) 2(0f18DYywonHr-n)2(8f16 D-)wpn, ) {3.7-3}

A correct weighting function can be very complex and difficult to find. It may consist of
both step functions and continuous functions. From equation {3.7-3} it is obvious that the
accuracy of the chosen weighting function is critical for the accuracy of an wellbore
position uncertainty estimate. Examples on the use of completely wrong weighting
functions are known. The common use of {/cosf as weighting function for the Finder tool
(a continuous gyro) is a good example on this. This is in sharp contrast with the correct
weighting function which according to chapter 6.1.1.6 is proportional to //sin/.

All mathematical derivations up to now have been made with the assumption that
inclination-, azimuth-, and depth measurements at one single station are uncorrelated. For
modern directional survey instruments, this is not necessary the case. In electronic
instruments like magnetic MWD, north seeking gyros, continuous gyros etc. |,
accelerometer measurements are usually used as input in both inclination and azimuth
calculations. These two measurements will therefore be correlated to some degree.
Another example is electronic instruments where all sensor measurements are fed through
the same analog-to-digital converter. The result must be some kind of correlation between
all sensors, which lead to correlation between the inclination and the azimuth
measurements. This and similar correlation should, if they are significant, be included in
the error analysis to give an optimal result. This can be done by introducing a set of
weighting matrixes instead of weighting functions. The different elements of each
measurement co-variance matrixes will then be made up of the different weighting
functions and the internal correlation between the different measurements.

ndom Errors
The different measurement co-variance matrixes will then have the following form
2z
ruﬁ_,lcm_, ub-_,H#HUw_,z Hg-_r“m-,;ﬁm_‘_f 0 0 0 ~|
2 Fo g 2
Ui i Craps™ Wass Caqia Wy glng Ourey” 0 0 0
LY 2 2 2 2z
Ap = g p Oy Ul Oy’ Upg " Oppyy ? 0 0 {3.7-4}
z 2 2
0 0 0 “Om  UilaSuy UioOm
Fy F &
0 1] 0 u’ﬂﬂdufz Uy Qg Mgy
- PR o
L o 0 0 Uit Gy Uy ) Up g |

Equation {3. /-6} will then take the form

Iy= L, (TALD {3.7-5}
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where the design matrixes I’; (related to the principal measurements inclination, azimuth
and depth) have the following form

[8f /8L, &8ffod, &8fyJ0D,, 8fJol, &fféd;, &fjoD,)
iy Ofeflsy  OfefO4,  &fefOD,, dfefol,  f/od; ofgoD;  {3.7-6}
Loffol., affod, of/éD., @fjel,  &fjéd; &feD,]

Systematic Errors

Itis in this case difficult to continue to make sequential computations, The best alternative
is to change to a complete matrix computation. Equation {3.3-3} will then take the form

Z'y= TAIT £3.7-7}

E'yis a complete position co-variance matrix for the entire survey, and has the dimension
of 3n multiplied by 3a.

The observation co-variance matrix A has the following form

rwm Wor e W Wh-]
Wi Wy o Wi . W
A= oo (3.7-8)
Wj, ‘TJ[ ..... Wﬁ PP “""F
LW.Q Wy W WMJ

where

[ WilnTly™ Wil Wg‘*‘mﬁm—-}
- X 2 2 2 -
Wie = WpW oo WyWell, We¥Wnls {3.7-9}
2 2 2
WiyWnTln™ WaWn o w.ﬂ_';‘wDi'ﬂDDJ

The design matrix I” has the following form

[ &r/8l,..0f"\/8D, 8ol .8f"W/8D,. 0 . 0 o . o |
C= 8fv/ol.df'WoDy 3fvfoly 3 /oDy, O o 0 0 . 0 (3.7-10}

L&r,./81,..81"/8D, 81/l 81" /8D, 8f /ol ;. 31 /8D, ;8 "3l 3f/3D, |
where 8f",/6l,= (Tl fi)lel, etc.
By manipulating with the observation co-variance matrix A, it is possible to include all
previously described effects with exception of redundancy. For a wellbore surveyed with

many consecutive independent surveys (different degrees of correlation between the
different surveys as described in chapter 3.5), A might become very complex.
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Angular Uncertainty Components

Angular measurements (inclination, azimuth and toolface) are looked upon as fundamental
measurements in traditional directional surveying. They are, however, not direct
measurements. They are derived from other measurements, which are related to physical
quantities like the earth gravity field, the earth magnetic field or the earth rotation rate.
The uncertainties related to derived angular measurements are therefore the combined
effect of uncertainties associated with the actual physical measurements, reference values
used to calculate the angle, and wellbore misalignments. The error in derived angles at
measurement station j, for example €;; in the inclination, is then given by

ey =L Wiy {3.8-0}

where g, is the independent error source number / and w;, is a weighting function
describing how g;;; is propagated into g;;. Similar relationships are also valid for the
azimuth and the toolface,

Measurement errors are usually unknown, but can, as shown in chapter 3.1, be substituted
with an estimated uncertainty (standard deviation) in accuracy studies, The resulting
inclination uncertainty &/ at station j is then given by

dlj= | T2 W1535)" + Zlrs Weidis) (3.8-2}

It is here assumed that all significant error sources affecting the inclination are broken
down into uncorrelated components.

Equation {3.8-2} and similar azimuth and toolface equations give the angular measurement
uncertainty at one single station. Such equations are very useful in uncertainty studies in
connection with "kick off" operations etc., where the angular accuracy is the primary
concern. They are, however, not so useful in connection with wellbore position uncertainty
studies, and this is usually the principal task in directional surveying accuracy studies,

Most weighting functions (w; , w, ;, W, ,) are, as it will be shown in chapter 5 and 6,
proportional to inclination-, azimuth- and toolface dependent trigonometric functions. The
sign of the weighting function might therefore vary along the wellpath. It was in chapter
3.3 shown that the wellbore position uncertainty is very dependent on the weighting
function sign if significant systematic errors are present. The sign information given in the
weighting functions will get lost if equation {3.8-2} is used directly in the position
uncertainty calculation.
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The sign variation in the weighting functions can be preserved if each uncorrelated error
source 1s handled independently. Each error source must then be summed into its own
position co-variance matrix, and not combined with other error sources before at the
investigation station. The different inclination uncertainty components are then given by

dflj:W;rudU[ {3.8-3}
(i{:_;: W;'g,idﬂ'q {33—-’}
dl g = Wi £3.8-5)

The total inclination uncertainty given in equation /3.8-2} is then equal 1o

di = JT0 ()’ {3.5-6}

Similar equations do also exist for the azimuth and the toolface.

The toolface (t) is, as it will be shown in chapter 5 and 6, an important parameter in the
estimation of many factors affecting the inclination and azimuth, For accuracy studies in
connection with drilled wellbores, there is no critical problems related to this. The toolface
is part of the survey result, and the toolface measurements can directly be used in the
weighting functions. The toolface creates, however, problems in connection with
uncertainty prediction in the planning stage.

It is impossible to predict the toolface, which therefore is an unknown quantity. One
solution is to divide the surveys into two classes. One with constant or near constant
toolface, and one with random toolface. The first class is for wireline measurements and
while drilling (MWD) with a bent sub, and the second class is for MWD with a rotary
bottom hole assembly (BHA). The constant toolface class can be treated as systematic
errors between stations within one survey, and the random classes random errors between
all stations.

The constant or near constant toolface assumption is probably not valid for longer sections
surveyed with wirelines or bent subs, and should be substituted with a gradually changing
toolface. This can be solved with the introduction of a randomisation distance, over which
the toolface change from being nearly constant to being random,

An other solution is to generate artificial toolfaces to be used in the weighting functions
based on a priori expectations about the toolface behaviour,
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Co-variance Matrix and Confidence Level

It was shown in chapter 3.1 that the position uncertainty at a point on the wellbore
trajectory is represented by the position co-variance matrix at this point. This co-variance
matrix contain all known information regarding the position uncertainty, and should be
used if a total uncertainty status is to be reported. To report a squared three dimensional
matrix is, however, not very practical. Instead, a practice to report an ellipsoid (3D) of
uncertainty, or projections of the ellipsoid (error ellipses 2D and error confidence intervals
1D), has evolved. The relationship between these figures and the position co-variance
matrix will be shown in this chapter.

The position co-variance matrix in the NEV co-ordinate system, is a symmetrical matrix
of the form

rqu O Owv 1
Iy = U!"E: ‘:'.E'.E2 GEP":
Lﬂ'm? Ugr: GWI .J

The matrix shows directly the uncertainty for directions originating from the point of
investigation, which are parallel to the north east and vertical axis. The uncertainty along
other directions can not be read directly out of the co-variance matrix, but is hidden within
the total matrix content. An equation for computing the uncertainty in any given direction
can be found by making use of the second Tienstra rule [3]. To find the link between the
Tienstra rule and the equation shown below, it is necessary to know the basic definition of
weight, which states that a weight is a relative accuracy measure between two given
measurements. The weight is usually set equal to the inverse of its own variance. When
more than two measurements are involved, it is common to weight the different
measurements to a common reference measurement. The unit of the searched quantity is
often chosen as the reference measurement, and given the weight of one. The uncertainty
along a given R- direction is then according to Holsen [4] given by

O = Oincos(@) + ofpcos? (B) + olcos (1)
+263gcos (a)cos (B) + 20 3cos (a)cos (1) + 20 Ep<os (B)cos () {3.9-1}

where cos(at), cos(P), and cos(y) are the directional cosines to R in the NEV system.

As long as biases are removed to a degree where they act as random errors between a large
number of independent surveys, the measurements are assumed to be normally distributed.
A point with a co-ordinate r along the R- direction will then be a linear combination of the
measurements, and therefore also normal distributed. This because of the linearisation
process used in the error propagation function, r/cg will then be standard normal
distributed N(0,1). This means that the uncenainty along a given direction can be scaled
up according to a standard normal distribution table, to create a confidence interval at any
significance level along this direction.
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Examples on scaling factors

Significance level Scaling factor
0% 0.667
95% 1.96
929.9% 329

A 95% symmetrical confidence interval for the estimated co-ordinate along the R-
direction is then

~1.960g <=r <=1.960x {3.9-2}
Since I, is a squared diagonal matrix, it follows from the linear algebra that it is possible
to find a new three dimensional orthogonal co-ordinate system, where Z, transforms into a
diagonal matrix. This co-ordinate system, which can be called 571/, has origin in the point

of investigation, and will usually have an other orientation than the XYZ system. This
matrix has the following form:

fosd 0 0 ]
Ig= 0 o O {3.9-3}
Lﬂ 0 BL'LEJ

Oss's Orr', Oy, are identical to the eigenvalues of the I, matrix.

The co-variance matrix Zs, where all correlation terms are equal to zero, shows that the
uncertainties along the 5-, 7-, and [~ axis are uncorrelated,

The values o, G, Gy, and the orientation of the STU co-ordinate system relative to
the NEV system, can be obtained in many ways. One possibility is to use a modified
version of the method described by John Holsen (Holsen [4]), where the orientation is
given by directional cosines to each of the S-, T-, and [- axis relative to the NEV
co-ordinate system, and where the matrix diagonal elements is found through a cubic
equation. The necessary computation steps are given below
1) Computation of the co-variance matrix elements g, 6°, 6,°
a=—~(Clx+ 0z +0}) {3.9-4)
b=0lnOk + Ol oy + Clal oy~ Ol ~ Oy —0hy {3.9-5)
€= —OynO w0 1y — 20 \pO mT gy + OO iy + Oy Oar +OngOoy  {3.9-6)

p= v(b - "T] {3.9-7)

g=c—Z(9b~2a%) {3.9-8}

nb.no Opphavsrettsbeskytiet materiale



38

V== arcsm ( ﬁ ) {3.9-9}

Oxs =—jﬁ[cus(v]+gsin{vj) -3 {3.9-10}
O = Jﬁ(msiv}—gsm(v}] -2 {3.9-11}
otw=3J3p sin() -2 {3.9-12}

2) Computation of the directional cosine elements cos(cy), cos(By), and cos(ys)

Ls= ok~ oks) o -oheods £3.9-13}
it 2 2 z 32

= ("Nﬁ"“ss) Oy~ ONEC NV {3.9-14}
Ns=—{oly-oks) (eke-oks) +oke £3.9-15)

cos (ag) = £3.9-16)

y yw‘rws
3.9-17
cos (Bs) = y; :""‘J.fﬁ"“ £ }
N
Nt < £ b e o 3.9-18}
el Y LM £

3) Computation of the directional cosine elements cos(c;), cos(P;), and cos(y;)

Y S I e £3.9-19}
Mr=(oky-0kr) ok~ 0ksoly £3.9:20}
Nr= —(niw = cs%T) (c_"gg - uf,-r) +Ohe {3.9-21}
Ly
L 3.9.22
cos (o) jrrsese {: '}
cos (Br) = —a— {3.9-23}
LHMFNT )
cos (yr) = {3.9-24}

JL:«HM
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4) Computation of the directional cosine elements cos(ct), cos(Py), and cos(yy) by
making use of the fact that the S-, T- and U- axis are forming a right handed
co-ordinate system.

It is already shown that r/oy for any given direction, is standard normal distributed N(0.1).
If 5 is a co-ordinate along the 8- axis,  the co-ordinate along the 7- axis, and u the
co-ordinate along the - axis; s/os, /oy, and w/cy must also be standard normal
distributed N(0,1). It follows then directly that

(u‘l:- +E4 "Tz} must be chi squared distributed with three degrees of freedom, %3.

o 9w
This chi squared variable has similar form as the left side of an ellipsoidal equation. A

three dimensional confidence interval can therefore be represented by an ellipsoid of the
form

%+%+:};::F {3.9-25}

where ko, ko, and ko, are the three semi axis of the ellipsoid.
The confidence coefficient (significance level) for this interval is

o =P3 <2iaz) {3.9-26}
Because ¥ is expressed with k%, we have

a =Pl <¥i.s) {3.9-27}
o and & will become equal by setting

E=J0t a3 {3.9-28}

%} can be picked from a chi squared distribution table as long as the significance level
o is settled.

This leads to the following table between £ and o

k [ 1 Comments

1.0 0.199 Equals the use of 1o measurement uncertainties inputs
1.538 0.50 50% confidence uncertainty ellipsoid

2.0 0.739 Equals the use of 2o measurement uncertainties inputs
2.79% 0.95 95% confidence uncenainty ellipsoid

3.0 0.971 Equals the use of 3o measurement uncertainties inputs
4.033 0.999 99.9% confidence uncertainty ellipsoid
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The table shows that the error ellipsoid term has no quantitative meaning without a stated
confidence level. This fact has up to now not been given enough attention in the
directional survey industry. A 95% confidence level for input uncertainty parameters are
for example believed to give 95% ellipsoid without scaling. This is according to the table
not the case. The ellipsoid will in this case have a significance level of 74%.

=

50% Uncentainty ellipsoid

95% Uncertainty ellipsoi

99.9% Uncertainty ellipsoid

Figure 3.9-1 Examples on different uncertainty ellipsoids obtained
from the same co-variance matrix

Equation {3.9-/} expresses, as already mentioned, the uncertainty in a given direction.
This quantity is not equal to the radius of the uncertainty ellipsoid in the same direction. It
has been a common misunderstanding within the directional surveying industry that this is
the case. The uncertainty given by {3.9-1} will always be greater than the ellipsoid radius
as long as the ellipsoid is not equal to a sphere, or the investigation direction is not equal to
one of the three principal axis directions. For these special cases, the two quantities are
equal. The validity of this can be examined by looking at the surface created by equation
{3.9-1} for all possible directions in space. This surface is according to Holsen [4] given
by the following equation

G+ +ut)’ - [ﬁaﬁg +Poir+ u’criruj =0 {3.9-29}

This is the footprint spheroid of the error ellipsoid with & = 1, which is contained within
the foot print spheroid for all other points than the six points where the principal axis meet
the ellipsoid surface. These six points are common for both spheroids, and they will both
have the same tangent plane. The footprint spheroid radius is grater than the ellipsoid
radius for all other directions. The more elliptical the ellipsoid are, the bigger is the
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difference. Maximum difference is found 45 degrees apart from the major ellipsoid axis.
Examples on differences 45 degrees apart from the major axis in the minor / major plane
are

Major  Minor Foot print radius

axis axis divided by ellipsoid radius
2 l 1.23
8 1 2.60

10 | 5.05

This example shows that the use of the error ellipsoid radius in connection with anti
collision consideration etc., can lead to serious underestimation of the possibility for a
collision. This is especially the case for magnetic measurements where the uncertainty
ellipsoids tend to be very elliptical.

Directional drilling accuracy requirements are usually divided into two. A vertical
tolerance, and lateral (horizontal) tolerance, which might be quite different from each
other. To be able to compare the estimated directional surveying uncertainty with the
required position tolerance, it is necessary to have the possibility to transform the content
in the position co-variance matrix into uncertainties in any given plane The position
uncertainty in a plane is represented by a two dimensional squared symmetrical position
co-variance matrix. The co-variance matrixes for planes parallel to the NE-, NV-, and EV-
planes, can be found directly as the three two dimensional sub matrixes it is possible to
extract from the Zy position co-variance matrix. Similarly it is possible to find two
dimensional co-variance matrixes in planes parallel to the ST-, SU-, TU- planes by creating
the three sub matrixes out of the I, co-variance matrix. The uncertainty in other planes are
not given directly by the I, position co-variance matrix. The information has to be
calculated out of the total position co-variance matrix content. This can be done by
creating of an orthogonal PQ co-ordinate system in the desired plane, where the
orientation of the P- and (J- axis in the NEV co-ordinate system are given by the
directional cosines cos(o;), cos(Bs), cos(yz), cos(eey), cos(By), and cos(y,). The uncertainty
along the P- and (- axis are then according to equation {3.9-/} given by

Opp = Cpycos?(etp) + G :c0s? (Bp) + Ghpcos?(yp)
+26zcos (ctp)cos (Br) + 20 1ycos (ap)cos (vp) + 20 5ycos (B pjcos (yp) {3.9-30}

Gég = Uirgmsz (o) + GEICDS:{B%) +G§Vmszﬁg)
+2oygcos (ag)cos (Bg) + 20),cos (atp)cos (yg) + Zcﬁpcas (Bo)cos (vg) {3.9-31}

The P and Q correlation can be found by once again making use of the Tienstra rule

039 = cim,-cos (ep)cos (o) + GIEEcus (Br)cos (Bo) + G108 (yr)cos (yg)
+0 ye(cos (ap)cos (Bg) + cos (cg)cos (Br))
+aa{cos (ap)eos (vg) + cos (cg)cos (ve))
+Ggp(cos (Br)cos (Yg) +cos (Bo)cos (1¢)) {3.9-32}
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The uncertainty in the plane of investigation is now given by the following co-variance
matrix

raﬂ'z Opg’ 1
T {3.9-33)
Lﬂ,ﬂgz GQQ: _J

This co-variance matrix contain all necessary information to create any uncertainty
number related to this plane including a two dimensional confidence interval, which tum
out to be the ellipse

L4 op {3.9-34}

Oge Opp
8T is the orthogonal co-ordinate system in the investigation plane where there are no
correlation between uncertainties along the two co-ordinate axis. o and oy, are the
variance along the 5- and 7- axis, while 5 and ¢ are the co-ordinates along the same two
axis. O and o and the orientation elements of the §- and T- axis, can be found by using
the same set of formulas as used in connection with the three dimensional ellipsoid
({3.9-4} - {3.9-24}). 6,5/, Oz, and " used in these equations do then have to be
substituted by 0", G, and cspﬁ,z_ O, O and o,* have to be set to zero. & is because
of the linear relationships described earlier in connection with the three dimensional error
ellipsoid, a chi squared variable with two degrees of freedom.

k= fxi o {3.9-35)

o is the confidence level of the uncertainty ellipse, and xf_g,z can be picked from a chi
squared distribution table.

This leads to the following table between & and o

k & Comments

1.0 0.394 Equals the use of 1o measurement uncertainties imputs
1.177 0.50 50% confidence uncentainty ellipse

2.0 0.865 Equals the use of 2o measurement uncertainties inputs
2.44% 0.95 95% confidence uncertainty ellipse

30 0.989 Equals the use of 3o measurement uncertainties inputs
37 0.999 99.9% confidence uncertainty ellipse

These numbers are different from the similar three dimensional ellipsoid numbers. It is
therefore very important to distinguish between two and three dimensional problems when
reporting uncertainties.
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Foot print curve

Figure 3.9-2  Example on the difference between a 2D uncertainty ellipse and
the associated foot print curve
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4.1.2

Error Propagation Theories

Published Theories

The Walstrom Model

The Walstrom error model (Walstrom [5]) is a random error propagation model dedicated
for directional surveys. The model was first published in 1969, and its validity was
questioned for many years. This because much greater directional errors are experienced in
the field than predicted by the model. After the publication of the Wolff deWardt model
(chapter 4.1.2), the Walstrom model has hardly never been used.

The reason for the problems with the Walstrom model, is that all directional survey error
sources are treated as random between stations. According to a large number of
publications, this is not the case. Major directional drilling error sources, like drill pipe
stretch, magnetic declination etc., have significant systematic components. To treat
systematic directional surveying errors as random will, as shown in chapter 3.1 and 3.3,
lead to serious underestimation of the real position uncertainty for most wellbore trajectory
designs. The Walstrom model should therefore not be used.

The Wolff deWardt Model

The Wolff deWardt model (Wolff [6]) is a systematic error propagation model developed
by Shell KSEPL for use in connection with directional surveying. The model was first
published in 1981, and is therefore based on the instruments present at that time, and on
the simple vertical and slightly deviated wellbore profiles drilled in the early 80's. Since its
publication, the Wolff deWardt model has become the most known and used emror
propagation model for directional surveys. It has in its basic published form (without
major modifications) been regarded as an industry standard. The wide use of the published
theory for many years without modifications is not according to Wolff and deWardt's
recommendations. They are obviously looking at the published theory as a preliminary
work, and are in their paper stating that further research is necessary.

In recent years, the validity of the Wolff deWardt model for modern instruments and
wellbore profiles has been questioned in a couple of papers (Thorogood [7] and Lange
[8]). No analysis or proof of model limitations are, however, presented. The model has
therefore held its reputation. The following discussion will, however, show that the model
in its basic form, as used in most of the surveying industry, should be improved or
replaced by a more appropriate and accurate model.

The Wolff deWardt model is a pure systematic error propagation theory designed for one
single survey in each wellbore. It has defined major error terms (size and wei ghting
functions) for four different instrument classes; good (1) and poor (2) magnetic surveys,
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and good (3) and poor (4) gyros surveys, The model seems to take it for granted, although
not stated in the paper, that gross errors are not present in the survey data.

Based on the discussion in chapter 3, the following limitations to the basic Wolff deWardt
theory are found

- Wolff and deWardt's assumption that random errors can be overlooked due to
systematic error dominance is not always true, It is for example not valid for three
dimensional wellbore trajectories (designer wells) where systematic errors are
cancelled out due to azimuth changes of more than 90°. The Wolff deWardt theory
may therefore underestimate the real position uncertainty (according to chapter 3 .3,
from 0 to 6m for a 4000m deep fish hook shaped wellbore surveyed with MWD).

- The Wolff deWardt weighting function sin() of the so called inclination error is not
valid when bent subs are used. The sin(]) function is rooted in the gravity driven sag
of the bottom hole assembly, and will lead to an underestimation of the position
uncertainty due to collar misalignment for low inclination wellbores. A 0.5°
systematic bent sub induced misalignment will for a 4000m deep and 15° inclined
wellbore result in a position uncertainty of 35m. The use of the sin(d) function will
indicate an uncertainty of 9m, which is only 1/4 of the real uncertainty,

- Major magnetic- and gyro error terms have a well known latitude / longitude
dependency (see chapter 5 and 6). Chapter 5.1.1.5 is showing that magnetic
measurement solutions have a singularity at the magnetic poles. Chapter 6.1.1.5 is
further showing that north seeking gyro measurements have an accuracy which is
proportional to //cos(latitude). These and other latitude / longitude dependencies are
not included in the Wolff deWardt weighting functions. Chapter 3.7 is showing that
accurate weighting functions are essential for a good result: The validity of the
Wolff deWardt model is limited to the North Sea where the reference data where
collected.

- The uncertainty associated with modern instruments like north seeking gyros, high
accuracy continuous gyros and inertial systems (see chapter 6 and 8) can not be
described by the limited numbers of error terms and the simple gyro weighting
function of J/cos(]), given by Wolff and deWardt. Modern continuous gvro
instruments are designed to be run from vertical to horizontal (chapter 6.1.1.6), and
they do not suffer from the horizontal wellbore singularity given in the Wolff
deWardt weighting function. The Wolff deWardt model will give a recommendation
on not to use these instruments in high inclined wellbores where they often are the
most cost effective high accuracy alternative.

- Wolff and deWardt are in their model assuming a linear growth in the depth
uncertainty with respect to the measured depth. This simplification to the real world
is probably too large to give a realistic picture of the actual depth uncertainty (see
chapter 7). Depth errors have a far more complicated nature. They are because of
stretch- and temperature effects etc. a function of geometry and measurement
technique. The MWD depth uncertainty for a 4000m deep vertical wellbore
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computed with Wolff and deWardt's 0.1% proportionality factor is for example only
1/2 of what is obtained with the detailed depth uncertainty equations given in chapter
72,

- The Wolff deWardt theory is designed as a one survey per wellbore error
propagation theory. This means that it is not applicable for extended reach- and
designer wells, where a combination of many surveys is the standard. To come
around this problem, some of the model users (for example Sysdrill Ltd.) have made
modifications to incorporate combined survey analysis into the model. These
modifications have not been published. Most of them seem, however, to randomise
systematic uncertainties at survey tie points. It was in chapter 3.5 shown that this
may lead to serious under estimation of the actual uncertainty. The magnetic
declination error is according to chapter 5.2.1.1 a bias, which is systematic for all
consecutive MWD surveys. A division of a 4000m long horizontal wellbore into
four consecutive MWD sections will underestimate the position uncentainty caused
by a declination uncertainty of 1.5° with 50m (100%).

- The Wolff deWardt model has because of the single survey per wellbore design, no
possibility to estimate accuracy improvements related to the redundancy in multiple
surveys and overlapping sections (see chapter 3.6). This has led to a practice of
picking what is believed to be the best survey instead of finding the optimal solution.

- Wolff and deWardt have not given any confidence level for their estimated error
parameters, which are said to be worst case figures. Worst case figures are, however,
non converging statistical figures which are difficult to estimate, They are for
example dependent on which quality control procedures that acctually are in use, and
on how many gross errors that can be identified and corrected for, This has lead to
confusion, and new instruments have been added to the model without securing the
same confidence level as used by Wolff and deWardt in their study. Examples on
totally different Wolff deWardt uncertainty figures (valid for the same instrument
and running conditions, see figure 4,1.2-1) used in different assets within the same
company are known.

-

Org.l Org2 Org3 Orgd
Error1 035 0003° 035 0.003°
Error2 0175 003* 0.175° 0.03°
Ermor3d O° 0 0.175* (.05°
Ermord 05° 05 005 0.1°

Figure 4,1.2-1 Examples on different Wolff deWardt uncertainty parameters
used for the same instrument by three different assets within the
same oil company and by the surveying company.

- Wolff and deWardt are, in addition to the already mentioned maximum errors, using
an uncertainty ellipsoid scaling factor of one in their paper. This has led to unknown
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confidence levels for wellbore position uncertainty figures obtained with the Wolff
deWardt model. A consequence of this is the common misunderstanding that 95%
(20) uncertainty inputs also are giving a 95% uncertainty ellipsoid. This is according
to chapter 3.9 not the case. It is giving a 74% ellipsoid, which has 40% smaller axis
than the real 95% ellipsoid.

The listed limitations show that the Wolff deWardt model, as it appears in the paper
{Wolff [6]) or in later unpublished improvements, today only has a limited value as tool
for wellbore position uncertainty studies. This is specially the case for the offshore
environment, where collision avoidance in large wellbore clusters and targeting far away
from the platform, are the major tasks.

The Instrument Performance Model

The Instrument Performance Model (IPM) (Thorogood [7]) is a combined random-,
systematic- and bias error propagation theory developed by BP. Systematic errors are in
this model divided into two parts. One part which is random between surveys, and one
other which is systematic between surveys. The latter one is called bias, and is given a
separate handling,

The model is probably the most comprehensive of all published directional surveying error
propagation theories, It was presented in 1988 as an alternative to the Wolff deWardt
model, which according to Thorogood's paper has some limitations with respect to modern
instruments, The IPM has up to now only been used within BP.

The IPM model is, as already stated, a combined random-, systematic- and bias error
propagation theory. The limitations that according to chapter 3.1 and 3.3 apply to pure
random- or pure systematic models are therefore not any problem for the IPM model, This
conclusion is drawn under the assumption that sign dependent systematic error terms, like
the dnll string magnetisation etc., are taken care of. The importance of this is not stated in
the IPM paper, and is therefore a potential danger (see example 3 in chapter 3.3).

It can be questioned whether the introduction of the new bias term is beneficial or not.
Biases are systematic between surveys. They do therefore have a gross error nature. The
question is therefore: is it beneficial to make use of the bias term, or is it better to correct
the measurements for bias effects before the position calculation is performed. The latter
alternative yields uncertainty estimates which easily can be communicated through well
known statistical quantities (the position co-variance matrix, the error ellipse or the error
ellipsoid), while the first alternative is more difficult to communicate. Here it is necessary
with a translation of the uncertainty quantity with respect to the computed wellbore
position in addition to the uncertainty itself (see figure 4.1.3-1). Personnel without
statistical knowledge can have problem understanding uncertainty reports containing both
statistical values and translations without the help of a dedicated graphical presentation
tool.
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4 Bias corrected survey Biased survey
Numerical uncertainty Numerical uncertainty
Major axis 20m Major s 20m
Minor axis 10m Minor axis 10m
Azimuth 100° Azimuth 100°
Bias offset 30m
Bias azimuth 0°
Graphical uncertainty Graphical uncertainty
Estimated wellbore
g

Figure 4.13-1 Examples on numerical and graphical presentation of biased and comrected uncertainties.

Thorogood is, in his paper, introducing a new concept for handling of depth errors. He
does not evaluate the position uncertainty at physical measurement stations, but at
theoretical stations with depths (as established through petrophysical logging) like the
measured depths. The measurement will then be taken at points differing more or less
from the defined survey points. The depth errors will in this case be transformed into
additional inclination- and azimuth errors due to a change in curvature over the distance
between the physical measurement stations and the theoretical stations. It can be shown
that the "true depth” position uncertainty for all practical purposes is equal to the survey
station uncertainty if the integrated along hole depth component is removed.

It is, according to the discussion in chapter 5 and 6, usually very little correlation between
inclination- and azimuth measurements in traditional directional surveying. A
transformation of the depth error into the two angular errors, the inclination- and the
azimuth error, means a great change to this. It will then be a strong correlation, which has
to be taken into consideration in the position uncertainty calculation if estimation errors
are to be avoided. The IPM paper does not give any instruction on how to handle this
problem. The model will further, because of the correlation introduced by depth error
conversions, be difficult to modify and use in an adjustment theory to improve accuracy in
redundant survey programs (see chapter 3.6). Mathematical expressions will become more
complicated, and correlation coefficients calculations will become a complicating factor.
These correlation coefficients will be dependent on wellbore geometry and relative depth
accuracy between the different surveys.

The IPM model is not designed for inertial systems, which already are on the market. The
final outputs from an inertial system is wellbore co-ordinates and not angular
measurements. Wellbore co-ordinates have to be transformed into true depth, inclination
and azimuth, if the IPM model is to be used on inertial data. This process will introduce
additional errors (alignment and model errors) into the analysis, and should be avoided.
The same problem will also be relevant for eventually future seismic positioning systems.
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Recommendations for a new Theory

WNone of the three published directional surveying error propagation theories are found to
be complex and accurate enough as planning tools for today's instruments and complicated
wellbore profiles. The limitations are both related to accuracy and to the ability to design
the most cost effective survey programs. A continued use of the Wolff deWardt theory, as
implemented in most of the industry, and the Walstrom theory, if still used, may lead to
underestimation of the real wellbore position uncertainty. This might in its worst
consequence lead to wellbore intersections or loss of targets. Organisations still using the
Wolff deWardt model are therefore advised to find a substitute. The Instrument
Performance Model is here rated highest of the three published theories. But there are also
serious limitations with this theory, which make it difficult to recommend it as an optimal
replacement for the other two, Instead it is recommended to develop a completely new
directional surveying error propagation theory. The new theory should be an evolution of
the Wolff deWardt theory to reduce confusion and resistance within the drilling industry.
It should nevertheless be comprehensive enough to give a realistic picture of the position
uncertainty associated with wellbore surveying with present and future instruments and
techniques. It should be designed to meet the following requirements

- Prediction of wellbore position uncertainties for standalone surveys with any tool
configurations based on historical tool performance.

- Prediction of wellbore position uncertainties based on historical tool performance
for any survey programs consisting of more than one consecutive section surveys.

- Prediction of wellbore position uncertainties based on historical tool performance
for redundant survey programs with overlapping wellbore sections and multiple
surveys. The possibility to or not to estimate systematic effects must be taking into
consideration,

- Final wellbore positions error estimation based on least squares estimation of
redundant survey programs. Unresolved systematic effects have to be included in the
error estimation based on historical data,

It is important that a new error propagation model is followed by standard procedures on
how to derive weighting functions and tool uncertainty parameters for new instruments
and running procedures. This to secure the validity of the model for some years, and to
avoid misuse similar to what have been seen with the Wolff deWardt theory.

A new expanded Wolff deWardt theory is currently under development by the "Industry
Steering Committee on Wellbore Survey Accuracy” (Hugh Williamson BP is chairman).
This new method will be a simplification of the basic theory presented in chapter 3. It will
give results that are very near to what eventually would have been obtained by applying
the basic theory presented here. The new theory will be the combination of the work of
four different persons / groups. This study is one of these. Most weighting functions
presented in this report will be used in this new theory. The steering committee work is not
yet completed. A first version of the mathematical theory is, however, finished. It is
currently under implementation in a major well planning software. This new method has
to be accompanied by adequate quality control procedures and realistic uncertainty figures
/ predictions for all relevant error sources.
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Errors in Electronic Magnetic Tools

Electronic magnetic tools are usually equipped with six sensors. Three accelerometers
which are used to find inclination (J) and toolface (<), and three fluxgate magnetometers
which together with the accelerometers are used to find the magnetic azimuth (4,). The
inclination, azimuth and toolface are therefore partly correlated, and it is necessary to split
the three resultant angular uncertainties into uncorrelated components to fit into a new
expanded Wolff deWardt error propagation theory, which is recommended in chapter 4.2.

(/

Figure 5-1 Example on sensor mounting in electronic magnetic tools

Tool Uncertainties

Sensor Uncertainties

It is, based on documentation given to the Industry Steering Committee on Wellbore
Survey Accuracy (ISCWSA) by major survey companies, concluded that there are three
principal types of sensor errors in electronic magnetic instruments. It is sensor reading
errors, misalignments of the sensors within the instrument, and errors originating from
instabilities in the electronics,

Sensor dependent errors are usually systematic within a survey as long as the instrument is
working within specification and is undamaged. They will also be systematic between
surveys if the same instrument is used in all surveys. This is the case even between
different wellbores. Sensor errors will then be random between surveys, if different
instruments are used in different surveys, or if the instrument has been recalibrated
between surveys.
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5.1.1.1 Accelerometers

Accelerometers are, according to William F. Lee at Allied Signal in Redmond,
Washington (a major manufacturer), non linear sensors specified to work within given
environmental limits (temperature, pressure, and vibrations), and calibrated to a pre
defined accuracy level. Outside these environmental limits, the measurements are not
valid. The same conclusion should be applied if calibration control measures are not met,
As long as an instrument is operating as specified, the accelerometer error will consist of
four independent components, a random component, a bias, a linear scale factor error, and
a second order scale factor error. The second order scale factor error is according to Allied
Signal not significant compared to the other three uncertainty terms unless very large
accelerations are present (the manufacturing specification for the accelerometer QA-T150
<= (0.000048/G). Accelerometers used in directional surveying are only exposed to small
accelerations during measurements. The second order term can therefore be neglected in
uncertainty studies. The random uncertainty is usually small enough to be without
significance in the wellbore position uncertainty compared to the bias and the linear scale
factor uncertainty because of its favourable error propagation characteristics. It can
therefore also be neglected in position uncertainty studies.

The two significant error terms, the bias (specification for QA-T150 n,<= 0.0006G) and
the linear scale factor error (specification for QA-T150 v,<=0.0006), will usually be
modelled and corrected for in a calibration process. The mechanical properties of
accelerometers are, however, changing with time. This is resulting in accelerometer bias
and scale factor errors even for calibrated instruments. To secure that the accuracy is held
within given limits, accelerometers are recalibrated at regular intervals. The bias and scale
factor uncertainties can then be defined as the standard deviations in bias and scale factor
calibration updates at consecutive calibrations. Different time spans between consecutive
calibrations, and a large number of identical instruments, should be used.

The local gravity (9.78<=G<=9.83m/s%) is usually not known as precise at a measurement
station as at the calibration station. This give rise to an additional scale factor uncerainty,
which is correlated between all accelerometers, and therefore a systematic error source for
an entire field. This scale factor uncertainty is usually small, and is given by

dug=% {5.1.1.1-1}
where G is the local gravity, and d(7 its uncertainty.

The uncertainty in an accelerometer measurement can therefore be divided into three
independent parts, the bias uncertainty (dn,), the linear scale factor uncertainty (dv,)
multiplied by the measurement itself, and the linear gravity induced scale factor
uncertainty (dug) multiplied by the measurement itself.

Accelerometer errors are usually uncorrelated with respect to each other. The only
expectation is for instruments where all accelerometer measurements are fed through the
same analogue / digital converter. They are, however, rare, and will not be covered here,




52

Accelerometer bias and scale factor uncertainties can therefore be regarded as random
between different instruments. They will because of this be systematic within surveys as
long as the same instrument is in use. The gravity induced scale factor uncertainty is, as
already mentioned, always systematic at the same location.

Electronic magnetic instruments are usually equipped with three equal and orthogonal
accelerometers, each mounted along one of the principal axis. The nine independent
uncertainties associated with the three accelerometer measurements (dg,,, dg,., dg.s, dg,,,
dg,,, dg,,, dg.,, dg.., and dg.;) can then be expressed as

dg. = dna {5.1.1.1-2}
dgn = gxdv, = -Gsinlsintdu, {5.1.1.1-3}
dga = gndug = -Gsinlsintdug {5.1.1.1-4}
dgy =dn, {5.1.1.1-5}
dgy = gydv,. = —Gsinf cos tdu, {5.1.1.1-6}
dgy = gydug = —-Gsinlcostdug {5.1.1.1-7}
dg:y =dna {5.1.1.1-8}
dg:z—'-gzdun EGCOSI@,, {5.! f!—?}
dgs = g:dvug = Geosldug {5.1.1.1-10}

where G is the local gravity, ] the inclination and 7 the toolface.
Because of the presence of inclination and toolface dependent trigonometric functions in
the scale factor equations, the accelerometer uncertainties should be kept in this form, and

not lumped together to three resultant accelerometer errors. This is to secure against loss
of sign information in the co-variance squaring process.

5.1.1.2 Gravity Inclination

Standard Three Accelerometer Systems

The following equations can be used to transform the accelerometer measurements into
inclination measurements ()

|
Fewai {5.1.1.2-1}

Where g, g, and g, are the three right handed orthogonal accelerometer measurements
with g, aligned along the wellbore axis.

Inclination uncertainty components (d/;) due to the accelerometer uncertainties given in
equation {5.1.1.1-2} to {5.1.1.1-10}, are then
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dly = %dg,l = %,1 £5.1.1.2-2)
dly = é@ﬂ ===l , {5.1.1.2-3}
dly = £-dg, = -2, {5.1.1.2-4}
dly = £-dg,; ==l {5.1.1.2-5}
dis = z-dgn =-"2'dg., {3.1.1.2-6}
dlg = E’rag-ﬂ =-2ldg, {5.1.1.2-7}

Three accelerometer systems are not sensitive to gravity induced scale factor errors. They
are therefore not included in these equations.

Three Accelerometer Systems with Axial Gravity Correction

Occasionally, there has been a discussion on whether a z- accelerometer comection should
be applied to stationary three accelerometer magnetic measurements or not. This
correction is developed for continuos gyro system suffening from large axial accelerations,
and is based on estimation of the z- accelerometer measurement by the x- and y-
accelerometer readings and a priori knowledge of the local gravity. The following equation
can be used in this estimation

g==:JGI_—(g§ g £5.1.1.2-8}

which yields the following inclination equation

{=arctan —':"h 5 = arcsin "3:’ {5.1.1.2-9}
et

This equation does not distinguish between [ and /80°-/. Additional information is
necessary 1o pick the right inclination. This information is usually obtained through
knowledge about the drilling performance higher up in the wellbore. Past drilling history
is, however, not always possible to use. For example when drilling horizontal wellbores.

The inclination uncertainty components due to accelerometer uncentainties (equations
{3.1.1.1-2} to {5.1.1.1-7}) are then

dl, = %dg,, =22t dg {5.1.1.2-10}
dl; = 2hdga = —22dg, {5.1.1.2-11}
dls = Zhdg, = —£2%dg, {5.1.1.2-12}
diy= Edg_.q =—Gt:: £ {5.1.1.2-13}

dl; = £dgs + Edg,s = 214G £5.1.1.2-14}
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The inclination uncertainty is according to these equations proportional to l/cos/ , which
lead to a rapid deterioration in inclination accuracy as the well approaches the horizontal.
Stationary systems utilising the axial correction method should because of this only be
used with great cause.

Gravity Toolface

The following equations can be used to transform the accelerometer outputs into highside
toolface (1)

€ =arctan :_; {5.0.1.3-1}
8. and g, are the two orthogonal accelerometer measurements made in the high-side
toolface plane (the plane normal to the z- axis).

Toolface measurements do only have secondary effects on the wellbore position
calculation. The toolface is not used directly in the minimum curvature calculation, only in
intermediate azimuth calculations. Its error propagation nature is therefore of less
importance than the inclination and azimuth error propagation, and its uncertainty
components can be lumped together to reduce complexity. The lumped uncertainty in a
highside toolface (@) measurement due to accelerometer uncertainties (equations
{5.1.1.1-2} to {5.1.1.1-7}) is then given by

o= () (ot + i) +(2) (s + ) + (S + )

B i
= J E'*;]_;h!sm tcos?tdu? {5.1.13-2)

Tt follows directly from this equation that vertical wellbores will have a infinite gravity
based toolface uncertainty. This is in accordance with the definition of the highside
toolface which is undefined in the horizontal plane.

3.1.1.4 Magnetometers

Page 54

Similar to accelerometers, magnetometers are specified to work within given
environmental limits (temperature, pressure, shocks, and vibrations), and calibrated to a
predefined accuracy level. Qutside these environmental limits, the measurements are not
valid. The same conclusion should be applied if calibration control measures are not met.
The magnetometer uncertainty can, according to Tensor in Austin, Texas (a major
manufacturer), be represented with three independent components, a random component, a
systematic bias, and a systematic resultant scale factor error. The random component can,
like in the accelerometer case, be neglected in position uncertainty calculations due to
favourable emror propagation.

Equaticn /5./1.7.3-2) second line should be = oy +2sin’toos’ du;
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The local magnetic field is usually not known with the same accuracy at a measurement
station as at a calibration station. This give rise to an additional scale factor uncertainty,
which is correlated between different magnetometers. This scale factor uncertainty is
given by

doz =2 {5.1.1.4-1}

where B the local magnetic field strength, and 4B its uncertainty. The uncertainty in an
magnetometer measurement can therefore be divided into three significant independent
uncertainties, the bias uncertainty (d@n,,), the linear scale factor uncertainty (dv,,)
multiplied by the measurement itself, and the linear field strength induced scale factor
uncertainty (@vg) multiplied by the measurement itself.

Magnetometers will usually be uncorrelated with respect to each other. The bias
uncertainty can therefore be regarded as a random error source between different
magnetometers. This gives a systematic between stations uncertainty as long as the same
instrument is in use. The same conclusion is valid for the sensor scale factor uncertainty,
while the field induced scale factor uncertainty will have a time and location dependent
propagation nature.

Electronic magnetic instruments are equipped with three equal and orthogonal
magnetometers, each mounted along one of the principal axis. The nine independent
magnetometer uncertainties (db,,, db.;, db.;, db,,, db,; db,;, db.,, db,; and db;) can then be
expressed as

dby =dnm {5.1.1.4-2}
dbys = bydom {5.1.1.4-3}
dba = b.dup £5.1.1.4-4)
b, = B(cos @ cos/cosAsinT —sin@sin/sin T+ cos @ sinAd ,co057) $5.1.1.4-5)
dby = dnm {5.1.1.4-6}
dbyy = bydom {5.1.1.4-7}
dbys = bydop {5.1.1.4-8)
by = B(cos ® cos cos A mcos T - sin @ sin/ cos T — cos @ sin A .sin 1) {3.1.1.4-9}
db:y = dnm {5.1.1.4-10}
dba = bodon (5.1.1.4-11}
dbz = b.dug {5.1.1.4-12}
b: = B{cos @sin/cosdy, +5sin® cosl) {5.1.1.4-13}

where B is the local earth magnetic field strength, A, the magnetic azimuth, 7 the
inclination, T the toolface, and ® the magnetic dip angle.

Magnetometer uncertainties should be kept in this form, and not lumped together to three
resultant magnetometer errors, because of the presence of inclination-, azimuth-, toolface-,
and magnetic dip angle dependent trigonometric functions in the scale factor equations.
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5.1.1.5 Magnetic Azimuth

The following equation can be used to transform the magnetometer measurements into an
azimuth (4)

A=8+An=0+arctan e {5.1.1.5-1}
where 8 is the magnetic declination and 4., the magnetic azimuth. b,, b,, and b, are the
magnetometer measurements along the principal tool axis. The inclination (/) and toolface
(1) are, as described earlier, determined through accelerometer measurements. Errors in the
accelerometer measurements will because of this also have influence on the magnetic
azimuth accuracy.

Figure 5.1.1.5-1 Definition of magnetic azimuth {4,

The azimuth uncertainty components (d4,) due to magnetometer uncertainties given in
equation {3./1.1.4-2} to {5.1.1.4-13}, and sensor dependent uncertainties in the inclination
(dl,) and toolface (dft), are then given by

Ay = Lo, = A e g, £5.1.1.5-2}
P £5.1.1.5-3}
ddy = Bodh,, = mrmdeenlmubdeyy (5.1.1.5-4)

M4 = ﬂ;&: !Eﬂ = m!m.{.mﬂmuinzl.dbﬂ {5‘,-}5_5}

Bos®
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dds = jiaib:.'_dbﬂ = _.‘i%"_’é“a:dad {3.1.1.5-6}
MF%E@ZZ:%%ﬂ {5.1.1.5-7}
M?=%ﬂ;+%dt = sin?;il;ﬁmcﬂ;_‘!_ Bhﬁshfc:s:;-msﬂml's& {51;‘,5_3}

where B is the local earth magnetic field strength and © the local magnetic dip angle. The
toolface uncertainty (dt) is given by equation {5././.3-2}, and the inclination uncertainty
(dl.) is the random sum of all significant sensor dependent inclination uncertainty
components at the measurement station given by

dl,= |E], [.:ir,?] {5.1.1.5-9}

where dl, is given by equations /5. 0.1.2-2} to {5.1.0.2-7} ({5.1.1.2-10} to {5.1. 1. 2-F4} if
gravity correction is used). The effect of the inclination and the toolface uncertainties on
the magnetic azimuth are combined into just one uncertainty term because of the high
correlation that exists between these two terms (determined through common
accelerometer measurements. db,;, db,; and db,, are not found in equations {5./.7.5-2} to
{5.1.1.5-8}, This shows that three magnetometer systems are not sensitive to the accuracy
of the local magnetic field strength estimate.

Equations {5.1.1.5-2} to {3.1.1.5-8} shows that the azimuth uncertainty tends towards
infinity as the dip angle approaches the vertical. This is in agreement with no magnetic
azimuth definition at the magnetic poles. The azimuth uncertainty do also, as expected,
tend towards infinity for vertical wells. The highside toolface uncertainty in {5.1.1.5-8}
reach infinity when vertical, and this is propagated into the azimuth uncertainty.

The inclination and toolface uncertainties used in equation 5./, /.5-8} are originating from
the same accelerometer errors, and are therefore correlated. A full correlation is assumed
in this derivation. This will, however, not always be true. Estimation errors can be avoided
by introduction of inclination- and toolface correlation coefficients, or by splitting the dd4,
term into six uncorrelated components. These uncertainty components will usually be
systematic within and random between surveys, and are given by

dA?J = %dg;[ - li.u'as'mf[sintcwfshl.;:‘:;::::uduhcwamtmfdgﬂ {5}}5—“}}
Bl sin & gin f{zin 1 cos Mein 4 q=cos 1008 Ay oos Bloes toos [

dds 2 = Zdga = o dga {5.1.1.5-11}

d."i?_: = %‘i’:‘dgyl < liuélhlf(:ust:mhh:ﬂ:rém':::sd..}-cm Er:i.n‘ma-:!dgﬂ {5_1..’5‘—[2}
B sin = sin foos Toos feind qdsintcos 4 Clein teos [

dA7.4 = 52dgn = ol g,z {5.1.1.5-13}

ddy s = Fodg, = BEE =gy, [5.1.1.5-14}

dds s = Srdge = 2O 4g {5.1.1.5-15}

Accelerometer uncertainties (dg., dgo, dg,:, dg,., dg. and dg,,) are given by equation
{5.1.1.1-2} to {5.1.1.1-10}.

nb.no Opphavsretisbeskyttet materiale
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Inclination and azimuth uncertainty components originating from the same accelerometer
error source are correlated with each other, and should be treated as correlated errors in the
position co-variance matrix calculation. The following uncertainty components are fully
correlated in magnetic surveys

- dl; and d4;
- dl, and dd, ,
- dl, and d4, 5
- dl, and dA, ,
- dl, and dd;
- dl; and d4, ,

Sensor Misalignments

The sensor uncertainty equations presented in the previous chapter, are developed under
the assumption that the principal instrument axis (x, y and z) are forming a perfect
orthogonal co-ordinate system. This is usually not the case. Instrument axis are defined by
the sensor mounting, and to mount small sensors perfectly orthogonal or parallel is nearly
impossible. There will always be small misalignments left after a calibration, It will be
shown that the resultant effect of this kind of errors usually are small, and that it is not
necessary to include sensor misalignments in the inclination- (d), toolface- (dt) and
azimuth- (d4) uncertainty calculation as long as standard quality control procedures are
used (regular tests of the calibration).

Accelerometers

Sensor misalignment might be expressed in many ways. A simple approach is to choose
the z- accelerometer axis as an error free direction, and the x-z accelerometer plane as an
error free plane. This can be done because the theoretical orthogonal x-, y- and z-
co-ordinate system used in the angular calculation ( /, A, and 1), is related to the actual
sensor mounting, and not to a predefined instrument co-ordinate system. Any single sensor
direction or sensor plane (containing two sensor directions), can therefore be treated as
error free. Other sensor axis and sensor planes will be misaligned with respect to this
chosen axis and plane. The accelerometer misalignments can then be expressed by

m,.. The difference between the x- and z- accelerometer axis angle (in the error free
x-z plane) and 90° (the non orthogonal part).

m,,. The non orthogonal part of the angle between the y- accelerometer axis
component in the theoretical x-y plane and the x- axis.

m,,. The non orthogonal part of the angle between the y- accelerometer axis
component in the theoretical y-z plane and the z- axis,

nb.no Opphavsrettsbeskyttet materiale



59

With this definition of sensor misalignments, the x- and y- accelerometer outputs will be
erroneous. The x- accelerometer will read a small component of the z- axis gravity in
addition to a major component of the theoretical x- axis gravity. The y- accelerometer will
read small components of both the theoretical x- axis and the theoretical z- axis gravity in

addition to a major component of the theoretical y- axis gravity. The theoretical inclination
is given by

JGi?

Iy = arctan *— {5.1.1.6-1}

where G,, G, and G, are the gravity components along the theoretical axis.

7

Figure 5.1.1.6-1 Definition of sensor misalignments

The measured inclination is

[eig}

I = arctan —; {5.1.1.6-2)

where g, g, and g are the accelerometer measurements.




The measured inclination expressed through gravity component is then given by

(G098 MG 50 ) 4Gy 08 1 005 M+ 4500 P 95 Mg+ 580 )
1{

[=arctan o {3.1.1.6-3}
For small misalignments, equation {5./.1.6-3} can be simplified to
GE4GE 42646 y5in m o+ 26 G y5in m e 426G, G i m
I=~arctan X sl = a £5.1.1.6-4)

Gr

By assuming equal misalignments (m,.=m_, = m,,_=m,), equation {3././ 6-4} can be
simplified to

7 | Ty
 ~ arctan J EF 420 sinm, (5.1.1.6-5)

The inclination uncertainty caused by uncertainties in accelerometer misalignments (dm,_)
is then given by

dl = ZLdm,, ~ cos? [2LCE 0 gy, < (w“u S5 ccs’!)cﬁn. {5.1.1.6-6}
dmy 1|GE+G; G 2

Maximum inclination uncertainty is given by

gl cosllsin®r :

bl 6 coslsin/=0 {5.1.1.6-7}
L= 9T {3.1.1.6-9}
dl .= 1.44dm, {5.1.1.6-10}

Minimum uncertainty is zero, and is found at the gravity based inclination singularity at
90° inclination. The inclination uncertainty caused by accelerometer misalignments is then
bounded by

0<dl < 1.44dm, {5.1.1.6-11}

This show that accelerometer misalignments only have small effects on the inclination
uncertainty for properly calibrated instruments. The inclination error turn out to be of
about the same magnitude as the misalignments them selves. Misalignments are usually
smaller than 0.01° for properly calibrated instruments. The effect on the inclination
accuracy is therefore without significance compared to other error sources. Accelerometer
misalignments can then be removed from the inclination error budget.
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Magnetometers

A similar study of the effect of accelerometer and magnetometer misalignments on the
azimuth uncertainty show that sensor misalignments also can be omitted in the azimuth
uncertainty estimation for all practical purposes.

Electronics Dependent Uncertainties

Electronic dependent errors are related to instabilities in the electronics such as analogue /
digital converters, down hole processors, etc. They give nise to systematic- and random
errors, which are added to the sensor outputs. Electronic dependent errors have a very
similar nature to the sensor errors mentioned previously, and consist of biases, scale factor
errors, axial misalignments, and random noise. The electronic noise and misalignments are
usually small compared to biases and scale factors errors for properly calibrated
instruments. It is therefore not necessary to include them in the error budget. Electronic
dependent biases and scale factor errors can be modelled by the same type of equations as
for sensor biases and scale factor errors.

It is, however, very difficult to distinguish between sensor dependent- and electronic
dependent errors in a calibration / qualification process, and thereby making estimates of
the individual error components. It is therefore recommended to lump them together to
combined biases (dn, for accelerometers and o), for magnetometers) and combined scale
factor uncertainties for (du, accelerometers and du,, for magnetometers). These lumped
quantities can easily be derived in a test stand during calibrations.

Instrument Misalignment

The misalignment between the z- axis of the sensor package and the principal axis of the
instrument collar, is defined as the instrument misalignment_ It is necessary to make use of
two different angles to give a unique quantification of this error. One alternative is to split
the random oriented misalignment angle () into two uncorrelated orthogonal
components, the x-z plane component and the y-z plane component (m, and m,) (Brooks
[12]). They will both have effects on the accuracy of both the inclination and the azimuth.
The inclination and azimuth instrument misalignment uncertainty components originating
from the same misalignment component will therefore be comrelated with each other. It
should be accounted for this effect in the position co-variance matrix calculation.
Instrument misalignments are systematic for one instrument as long as it remains
undamaged and not repaired. It is therefore usually a systematic within and random
between surveys emor source.
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Figiure 5.1.3-1 Definition of instrument misalignment
Inclination

The inclination uncertainty originating from the x- and the y- axis misalignment are given
by

dfs = sintdm, {3.1.3-1}
dls = cos tdm, {5.1.3-2}

where dm, and dm, are the two instrument misalignment uncertainty components, and 1 the
toolface. The combined effect of these two inclination uncertainty components will, like

anticipated, vary between ,fcbni +dm; =dm and - Jdmi +dm;j =—dm, and it will cancel
out when the toolface is reversed,

Azimuth

The azimuth uncertainty originating from the x- and the y- axis misalignment uncertainties
(dm, and dim,) are further given by

ddy =—dm, {5.1.3-3}
dds = 22dm, {5.1.3-4)

The azimuth uncertainty is not defined for vertical wellbores and is therefore unstable for
near the vertical (a division with sin(7)). This should, however, not represent any problem.
An increasing azimuth uncertainty with decreasing inclination has, as stated earlier, little
influence on co-ordinate uncertainties,
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Environmental Uncertainties

Earth Magnetic Field Uncertainties

The earth magnetic field at a point is usually described by the three parameters, the total
magnetic field strength (B), the magnetic dip angle (@), and the magnetic declination (5).
The earth field 1s built up of three major sub fields. The earth principal field (the major
contributor), the local crustal field (often called the local anomaly field), and the
atmospheric field (including the effects from induced currents in the earth surface). Non of
these fields are constant. They vary with both geographic position and time.

Magnetic field estimates are used directly in magnetic directional surveys. The accuracy of
a magnetic survey is therefore very dependent on the accuracy of these estimates. They are
usually obtained by one of the following methods

- Use of a recommended regional best fit value

- Use of a magnetic field prediction model

- Presurvey on the surface to correct the model for local magnetic anomalies

- Real time magnetic monitoring (at location or interpolated from reference stations)
- Real time monitoring and local pre survey

The three last examples are different versions of the new In-field referencing surveying
technique, which is becoming more and more used.

Accuracy in magnetic field estimates will vary significantly with estimation method, both
in size and propagation nature.

The principal field is most easily descnbed by a strong magnetic dipole centred in the
earth and a few secondary dipoles placed half inside the earth body. On the surface, this
creates a magnetic field that varies with both latinude and longitude, with latitude as the
dominant variable. The field can be described with spherical harmonic functions or look
up tables (in latitude and longitude). The accuracy of magnetic models used in connection
with directional surveying is so high that the principal field can be regarded as error free
compared to other field errors.

The atmospheric field varies with time. It has significant daily-, yearly- and eleven yearly
variations in addition to short term fluctuations cased by solar effects (magnetic storms
etc.). Strong storms are in directional surveying regarded as gross errors, and should be
controlled through quality control routines. Corrections based on local magnetic
monitoring will remove all significant contribution from the atmospheric field. The
reference station has to be near enough to the survey station to secure high correlation
berween the two stations (Torkildsen [13] is indicating 200km as a maximum distance).
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Short term fluctuations and daily vanations are not included in any other field estimates
than those obtained by magnetic monitoring. They must therefore be regarded as error
sources when magnetic models or best fit values are used. The size of random fluctuations
can be large, but that is unusual. They are usually small. Short time fluctuations are only
considered as a significant error source when working with high confidence levels (over
99.9%). It must be taken into account that random fluctuations probably not are normal
distributed (Torkildsen [13]), if they are to be include in the uncertainty estimation. The
daily vaniation has an amplitude of more than 0.1°, and must be considered as a significant
error source in all types of magnetic surveys.

The yearly variations and the eleven yearly variations are usually accounted for in all
estimation methods, and are therefore not regarded as significant error sources.

The local crustal field is created by magnetic minerals in the earth crust. Their effect can
be very strong and local if ferric ore bodies are present. Anomalies created by such ore
bodies are in fact used by the mining industry to find ferric minerals. Ferric ore bodies are,
however, not especially common in sedimentary basis where drilling usually are
performed. The principal source for local crustal fields is instead a variation in the depth
down to and the field strength of the magnetic basement rocks. Local crustal fields must be
regarded as measurement errors in magnetic surveys. They can be partly removed if
corrections based on local anomaly determination are used, but there will always be some
residual errors left. Vertical information in addition to surface survey data will reduce the
residual emror. Significant variations in the magnetic basement will usually have longer
wave lengths than horizontal wellbore displacements. Emors associated with the local
crustal field will therefore be systematic between stations for an entire field.

3211 Magnetic Declination
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The magnetic declination (5) is by definition the horizontal angle between the earth
magnetic north and the true magnetic north. The azimuth is then given by

A=Ay +8 {5.2.1.1-1}
which gives the following azimuth uncertainty component

dA="2db + Sdb = db {5.2.1.1-2}
db 1s a complicated quantity consisting of different time and geographic dependent
components, which all have different error propagation characteristics. The different
components must because of these different error propagation characteristics be treated

separately. The number of significant components vary with different types of magnetic
surveys.

Line 2 chapter 5.2.1.1 true magnetic north should be true north



635

The most significant magnetic declination uncertainty components, which have to be
included in wellbore position uncertainty studies, are

- The unmodelled declination uncertainty &,.

This component, which is very near the modelled local declination value, shall only
be used in uncertainty studies if no declination values are used in the azimuth
calculations. It is a bias (gross error), which it ideally should have been corrected
for. &, varies with geographic location, and is systematic between all stations within
a field, both within surveys, between surveys, and between wellbores. The
unmodelled declination uncertainty should be derived from a high accuracy global
magnetic model. Although this is a bias, it is recommended to treat it as a dual
signed uncertainty figure in accuracy studies. The position uncertainty will be
slightly over estimated, but this is considered as a minor problem compared to the
benefit of securing against human misinterpretation of of-centre uncertainties.

- The modelled declination uncertainty b,

This component is to be used when the local declination is established through a
high accuracy magnetic model. It is equal to the uncertainty in the magnetic model,
and is mainly caused by local crustal anomalies. 45, is mainly systematic between all
survey stations in a field (Torkildsen [13]).

- The residual crustal declination uncertainty 5,

db, is equal to the residual uncertainty in the modelled declination after it has been
corrected for estimated local crustal anomalies. Local crustal anomalies will usually
be estimated through surface magnetic area surveys. It is difficult to settle the error
propagation charactenistics for this error source, since it is related to local geology
and not to wellbore geometry. The magnetic basement (usually the primary source
for this error), is relatively constant over a field, and the residual field is expected to
be the same. It is therefore recommended to use a systematic within a field error
propagation method for this error source as long as no detailed geological data are
present to prove anything else,

- The daily declination variation a5

The daily declination variation is a 24 hour oscillating effect caused by solar effects
and the earth rotation. Station based survey times will usually not be available
during uncertainty studies, especially not in the planning stage. It is therefore
difficult to establish exact size and station to station correlation properties for this
error source. Simplifications are necessary. It is recommended to make use of the
daily standard deviation as an estimate for dd,, and to assign different error
propagation to wireline- and in MWD surveys. Wireline surveys should be handled
as if the daily variation is a systematic between stations uncertainty for single
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surveys, while MWD surveys should be handled as random between stations
uncertainties when drilling in medium and hard formations. Fast drilling (over ca 50
meters per hour) in soft formations necessitates the introduction of a station to
station correlation coefficient. Both wireline and MWD surveys should be added
randomly between surveys. These conclusions are based on a survey speed analysis
(Torkildsen [13]).

The declination dependent azimuth uncertainty components 10 be used in connection with
different surveying techniques are then given by

No Declination in Use

dd o =581 {3.2.1.1-3}

dd =dba {52!—14}
The Use of a Magnetic Model

dd g = dby {5.2.1.1-5}

ddy =dba {3.2.1.1-6}

The Use of Magnetic Monitoring And a Magnetic Model

dAyo = ddy {5.2.1.1-7)
dA" =0 {5_2,1’_!-3}

Magnetic Monitoring And Local Crustal Correction

dA yo=db, {3.2.1.1-9}
ddy =0 {5.2.1.1-10}

5.2.1.2 Magnetic Dip

The magnetic dip angle (@) is per definition the angle between the total magnetic field
direction at a given point and the local horizontal plane. The azimuth is given by

A=A, +8 {5.2.1.2-1}
which gives
ddy; =22d0+ 240 =0 {5.2.1.2-2}

Uncertainty in the magnetic dip angle estimate has therefore no effect on the azimuth
accuracy in standard magnetic surveys.
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5.2.1.3 Earth Magnetic Field Strength

522

The total magnetic field strength estimate (B) has, according to the discussion in chapter
{5.1.1.5}, no effect on the magnetic azimuth uncertainty in standard magnetic surveys. The
azimuth is also in this case given by {5.2.1.2-1}, which differentiated with respect to the
total field strength scale factor uncertainty gives

ddn B Adm a8 25 a8
Cﬂ413=E1’ﬂJﬂ +}';;‘db}-3+a~Trdb:3 +E:dbﬂ+mtﬁ}-3+§l:dbﬁ=ﬂ {3.2.1.3-1}

External Magnetic Field Uncertainties

The total magnetic field at a given location is the vector sum of the local earth magnetic
field and other significant man made local magnetic fields. In directional surveying,
platforms, templates, casings (both in the drilled or in nearby wellbores), the drill string,
and the bottom hole assembly (BHA), can be the origin of such external magnetic fields. A
wireline can also create a local field. Simulations have, however, shown that this field
usually is small. It is not regarded as a significant error source in directional surveying. It
is convenient to divide man made magnetic fields into two classes, one drill string class
(drill string plus BHA), and one external structure class.

5.2.2.1 Drill string Magnetisation

Most drill string parts included in the BHA consists usually of, or have components with
ferromagnetic materials. They will be magnetised by the earth magnetic field or by other
major magnetic fields. There will always be some remanent magnetisation left afier a field
has been removed or is weakened, for example due to change in direction, The single most
important non earth magnetic field to cause drill string magnetisation is, according to
McElhinney [14], generated by equipment for non destructive testing (X-ray etc.). This
field can be between fifty and hundred thousand times bigger than the earth field, and
leave remanent magnetisation in the drill pipe or collar that are greater than the earth
induced field. This remanent field is characterised by two equal magnetic poles with
opposite sign, each situated approximately fifty cm from the two pipe ends. Lotsberg [15]
has found pole strengths of up to 1100 uWb while the induced pole strength according to
McElhinney usually is less than 60 uWh. The induced component will usually because of
this be without significance compared to the permanent part, and can be omitted in
position uncertainty studies.

The permanent magnetisation can be divided into an axial and a cross axial component.
The axial component will not generate any toolface dependency in the azimuth
calculations, while the cross axial component will. It has its origin in magnetic poles not
centralised along the drill string axis, which take part in the drill string rotation. The
permanent cross axial magnetisation will usually, because of a small off centre distance
compared to normal non magnetic distances between dnll string poles and magnetic
instruments, be much smaller than the axial magnetisation. It is therefore without
significance in the magnetic azimuth determination.

ntuno Opphavsretsbeskytiet materiale
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To reduce the azimuth uncertainty caused by drill string magnetisation down to an
acceptable level, the practice is to mount the magnetic tool within non magnetic drill
collars (NMDC). The necessary NMDC length on each side of the instrument has to be
determined for each individual survey. This length is dependent on latitude, wellbore
geometry, etc. (Grindrod [31]).

Due to drilling requirements (steering ability etc.), shorter non magnetic drill collars can
be used in connection with axial correction algorithms to get a similar effect. The use of
axial corrections are very common, and they are in fact often used even when enough
nonmagnetic collars are installed. Surveying techniques involving axial corrections have
very different error characteristics compared to standard methods. It is therefore important
to distinguish between the different methods in uncertainty studies.

MWD without Correction for Axial Magnetisation

The cross axial magnetisation is, as already mentioned, usually without significance in this
case where the axial component is dominant. It is therefore enough to evaluate the effect
on the magnetic azimuth determination of the axial magnetisation. The axial magnetisation
is usually not known at the planning stage. It is recommended to use the standard deviation
of magnetic pole strengths of a large number of BHA components as input in uncertainty
predictions. The standard deviation should be established by pole strength measurements
on many different types of BHA components. It is important that each component type is
populated with individual components exposed to different downhole- and stock
conditions,

Drill

i Drill
collars NMDC instrument NMDC collars bit

Figure 5.2.2.1-1 Magnetic conditions in a drill string

The field strength at the magnetic instrument is created by pairs of magnetic poles in the
non magnetic drill pipes / collars. Poles in the nearest pipes / collars to the instrument are,
as 1t will be shown, most significant.

The axial field strength uncertainty at the magnetic sensors (dB,,) caused by the nearest
preceding magnetic drill pipe / collar is given by

T [l___imj L
dBo _(4‘?.- awty ) 4 = 008 (hetly)’ e PR
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where dP,, is the uncertainty in the magnetic pole strengths of different BHA components
(standard deviation), [, the average distance between two complementary poles (usually
the length of one drill pipe or collar), and /; the length between the magnetic instrument
and the nearest magnetic pole (length of non magnetic collars presiding the instrument).

The axial field strength uncertainty at the magnetic sensors (dB,) caused by all magnetic
drill pipe / collars installed higher up in the drill string is then given by

- Jrd
- Y] 1] £y | ) 0.08
dBaa—o,usJ[ﬁ o) Hom o) o ome s o (5.22.12)

The axial field strength uncertainty at the magnetic sensors caused by all the following non
magnetic drill pipe / collar will be given by the same expression as long as equal amount
of non magnetic material is used on both sides of the instrument. Its sign will, however, be
random with respect to the first case. The total drill string induced axial field strength
(dB,) can then be found by multiplying equation {3.2.2. /-2} with the square root of two.

dB, = z“?“- =ldp, {5.2.2.1-3}
W Iy

The magnetic field sensed by the magnetic instrument is the combined effect of the earth
magnetic field and the axial drill string magnetisation field (dB.). The combined field will
only differ from the earth field in the axial direction (the z- axis). The axial magnetisation
will therefore have the same effect in the magnetic azimuth determination as a z-
magnetometer bias. The axial azimuth uncertainty is then given by

dd = ?T:d'aﬁ = ___._u"“;::’ ;- dB, {5.2.2.1-4}
where B is the earth magnetic field strength, @ is the magnetic dip angle, [ is the
inclination, and A, 15 the magnetic azimuth.

The axial dnll string magnetisation azimuth error is a bias type error, where the sign is
totally governed by the sign of the magnetic pole strength. The error can because of this be
regarded as systematic between stations within the same survey and random between
different surveys as long as the BHA is changed. This is usually the case. New surveys are
usually initialised at bit runs, and causes the pole strength to become random between
different surveys.

MWD with Correction for Axial Magnetisation

There are many algorithms available for correction of axial drill string magnetisation.
Many different MWD companies have developed and patented their own algorithms
(Coles [16], Engebretson [17] and Russell [18]). Even though different patents are present,
most algorithms seem not to be differing very much. Most standard axial correction
methods are ignoring or making adjusts to the z- magnetometer readings through an
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introduction of external data (the local magnetic dip and total field strength) in the azimuth
calculation. A couple of new and more sophisticated methods involving trend analyses
between consecutive measurement stations are also available. They will, due to
confidentiality considerations, not be covered here, It is, however, recommended to make
use of the same uncertainty equations as for standard corrections. This is justified by the
fact that these new methods also suffer from the same type of singularity. They have,
however, proven to be more accurate before the singularity is reach, a fact that should be
reflected in the use of more accurate uncertainty inputs.

Standard axial correction methods are, as already stated, not very different from each
other. Weighting functions derived from one method will also be valid for the other. In the
following, the derivation will be shown for one method. It is making use of a calculated z-
magnetometer reading instead of the measured one. The new z- reading is obtained by a
minimising of the difference between the given earth magnetic field vector and the
measured (corrected) total field vector. Ignoring the real z- magnetometer measurements
means that the magnetometer azimuth uncertainty equations given in chapter 5.1.1.5
(equation {5.1./.5-2} to {5.1.1.5-15 }) are not valid. A new set of weighting functions have
to be derived. The azimuth accuracy is in this case sensitive to dip and total field strength
EITOrS.

The x- and y- magnetometer measurements are given by
b = B(cos © cos J cos A psin T — sin @sin/fsin T+ cos @ sin A ,cos 1) {5.2.2.1-5}
by = B(cos © cos/ cos Amcos T —s5in @sin/ cos 1 — cos @ sin A msinT) {5.2.2.1-6}

where B is the local earth magnetic field strength, 4,, the magnetic azimuth, / the
inclination, T the toolface, and © the estimated magnetic dip angle,

The minimisation constraint with respect to the total magnetic field strength and the dip
angle can be expressed as

(by—Bcos®)* + (b, — Bsin®)® = min {5.2.2.1-7}

where b, is the horizontal component and b, the vertical component of the measured field
given by

.Elf. o byoos v—bysint

— {5.2.2.1-8}
Lﬂﬂ:—% oos feos 4 o—b.sin t-dyooa T
b= =7 {5.2.2.1-9}

Substituting b, and b, in equation {5.2.2. /-7} with b, and b, in equation {5.2.2./-5} and
/5.2.2.1-6} yields an equation in the magnetic azimuth 4,,, which differentiated with
respect to 4,, gives the following result

(by— B cos @)sinfcos A, + (b, —Bsin@®)cos/ =0 {5.2.2.1-10}
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Equation {3.2.2. /-10} can be solved with respect to A, and then partially differentiated
with respect to the inputs (the two magnetometer measurements, the inclination, the
toolface, the dip and the total field strength). This yields the following magnetic azimuth
uncertainty components for magnetic measurements with axial corrections. The measured
horizontal and vertical components are estimated by their a priori estimated counterparts in
these equations.

Cdwm ol A noon t—cos Jein dmsmt
l'-'ild] = “_]db;] = Bwa_ﬂni;ghz“_) lib,ﬂ {5. 2. 2.}‘} f}
od 05 A moos T=cos fsin 4 .sint
=Zn P db 5.2.2.1-12
=5 B Bes®(1sin'lainidn) { 4
Edm et Jein A moos 14005 A 50t
=—=dh, ; 5.2.2.1-
dA} aa, ¥l = Bmﬁ{l_’hziﬁnz“") l’rib}l { 2 2 f fjj
Edn con Jain A ooos 14008 A mtint 9,
===4h 2.2 1-14,
w3 3, R .B'm@{l-s'nehin:.!_} b2 5 4
dAs =0 {5.2.2.1-15}
ddg=0 {5.2.2.1-16}
dﬂf'; = %ﬂ, =+ ﬂ;’: £
05 [ 510 A mlcos B sin T cos A wtsin B oo [} cos Bcos [~sin@sin Jeos A m o
dl; — 5.2.2.1-1
cos ® I-sinfsin* ) cos€{ 1-sin’Tsin*4a) &= f S
dAy = Z2d ~ ""‘"“"‘:“f‘z;’:i“‘a’““’m {5.2.2.1-18}
Az = L2dbys + L2 » ~IRARE i O o) g {5.2.2.1-19}
X ¥ EWGB[I-M'IM A!.)
dd1s=0 {5.2.2.1-20}

Magnetometer uncertainties (db;, db,;, db,s, db,,, db,, and db,,) are given in equation
{5.1.1.4-2} to {5.1.1.4-9}.

It follows directly from these equations that the accuracy of axial magnetisation correction
algonthms tends towards infinity at the magnetic poles and for horizontal wellbores in the
magnetic east or west direction. It should also be noted that the magnetic azimuth equation
derived from equation {5.2.2. /-10} does not distinguish between 4, and 180°-4,.. The
correct quadrant has to be chosen from other inputs like earlier drilling performance etc.
There is therefore a real possibility to pick the wrong solution near the horizontal magnetic
east / west direction when significant azimuth changes take place between two consecutive
survey stations. This problem has been experienced in the field from time to time, and has
therefore to be taken seriously. One example is presented in Ekseth [25]. It shows azimuth
errors, which over a longer wellbore section increase from nearly zero to more than 20°.
The unpublished consequence of this was that all three targets where lost. Axial
corrections should not be used if the uncertainty after correction is larger than the
uncertainty without correction, or if it is a realistic possibility to pick the wrong quadrant.
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The toolface uncertainty {dt) is given by equation {5././.3-2}, and the inclination
uncertainty (dl) is given by equation {3.7.1.5-9}. The effect of the inclination and the
toolface uncertainties on the magnetic azimuth are, as in the uncorrected case, combined
into just one uncertainty term because of the high correlation that exists between these two
terms.

Magnetometer dependent equations ({5.2.2./-11} to {3.2.2.1-14}) are, as shown earlier,
systematic within surveys, and random between surveys as long as different instruments
are used in different surveys. The same conclusion is valid for the inclination and toolface
dependent equation ({3.2.2./-17}), which are rooted in accelerometer errors. Magnetic dip
and total field strength equations ({3.2.2./-18} and {5.2.2. 1-19}) should be given the same
error propagation as the declination dependent equations given in chapter 5.2.1.1. This
recommendation is based on the fact that the magnetic field vector is described by the
three values, the total field strength, the dip and the declination. Any error source affecting
the magnetic field vector should therefore be reflected in all three parameters.

It is of course possible to substitute the inclination and toolface used in these mathematical
derivations with the basic accelerometer measurements. The d4; uncertainty component
given in equation {5.2.2. /-17} will then be divided into six uncorrelated components,
which have to be treated separately. These six uncertainty components will usually be
systematic within and random between surveys, and are given by
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Accelerometer uncertainties (dg.,, dg., dg,,, dg,., dg., and dg,.) are given by equation
{5.1.1.1-2} to {5.1.1.1-10}.

These azimuth uncertainty components will, as in the uncorrected case, be correlated with
their inclination counterparts. The following uncertainty components should therefore be
treated as correlated errors in the position co-variance matrx calculation
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- dI, and dA, ,
- dl,and dA; ,
- dl; and d4, ;
- dI, and dA,
- dl; and d4, ;
- dl,and dA,

EMS on Wireline

Electronic multishot surveys (EMS) are usually run on wirelines, This is either done in
open hole or in the BHA. It was in chapter 5.2.2 shown that a wireline can be regarded as
non magnetic in connection with wellbore surveying. EMS surveys taken in open holes do
therefore not suffer significantly from drill string magnetisation like error sources. d4,,,
dA;; and dA,, are therefore not to be used in EMS uncertainty studies in open hole.

External Structure Magnetic Fields

Magnetic fields generated by external structures made up of ferromagnetic matenials like
casings, templates, etc., can be very strong, and destroy the quality of any magnetic
measurement. These errors are therefore to be defined as gross errors. Magnetic directional
surveys should because of this be avoided if strong external fields are present. This should
be controlled through quality control routines designed to secure against surveying in areas
with external fields over a given limit. Such quality control routines should be possible to
implement. Magnetic fields around external structures can be estimated. There are,
however, two situations where it will be difficult to always avoid the use of magnetic
instruments in potential significant external field areas. It is when drilling out of an
existing casing, or near and parallel to existing casings. It is in these two cases necessary to
account for the expected extemal field in position uncertainty calculations. Drilling out of
an existing casing means either out of the casing shoe or out of a milled window. The error
characteristics are, unless the new wellbore is parallel to the old one over longer distances,
not differing much. It is therefore regarded as sufficient to analyse only the casing shoe-
and the parallel to existing casings cases, to derive necessary weighting functions for
wellbore position uncerainty estimations.

The magnetic nature of installed casing strings is not known well enough to give final
conclusions on this error term. Casing pole detection performed by Pratt and Hartmann
[32] show significant magnetic poles near the ends of individual casing pipes. Pratt and
Hartmann did, however, not perform any quantitative pole detection. Further research is
therefore needed. It is, however, reasonable to expect a behaviour not far away from the
drill pipe behaviour (described in the previous chapter). Both string types are made up of
joined ferric pipes, which are exposed to the earth field for longer time periods, and which
might have been heavily magnetised as part of the manufacturing quality control. It is
therefore assumed that the principal source of casing induced magnetic fields are remanent
magnetisation after man made induction, and that each casing pipe is believed to be an
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independent magnet bar. Whether installed casing strings actually have such a high
frequency of significant magnetic poles is still an unanswered question, but this
assumption is regarded as sufficient as a first order approximation. It represents a worst
case solution when drilling parallel to existing casings (the only case where the pole
frequency is imporant).

Drilling out of an Existing Casing
il

Figure 5.2.2.2-1 Magnetic conditions while drilling
out of an existing casing shoe

The field strength at the magnetic instrument is created by pairs of magnetic poles in the
casing string. The pole at the casing shoe will be most significant. The associated axial
field strength uncertainty at the magnetic sensors (dB,) is according to the derivation for
the drill pipe induced magnetisation given by

dBe; = 2dp e {5.2.2.2-1}

-

where dP_. is the uncertainty in casing magnetic pole strengths (standard deviation), /. the
length between the magnetic instrument and the casing shoe and [, the length of one casing
pipe (average).

The magnetic azimuth uncertainty in the distance /. below the casing shoe is then given by

dAys = i:: "V % {5.2.2.2-2)

Beoos
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B is the local earth magnetic field strength, 4, the magnetic azimuth, / the inclination, and
© the magnetic dip angle. Equation {3.2.2.2-2} can also be used when drilling out of a
milled casing window, if the new wellbore is significantly deflected from the old one.

dA,: will because of the inverse squared length effect decrease rapidly with increasing
distance, and will, at most, only be significant in one or two measurement stations (30 - 60
meters). It will have very little effect on the wellbore position accuracy, and can usually be
omitted. The error propagation is systematic between stations and random between

Surveys.

Drilling Near and Parallel to an Existing Casing

The knowledge of the magnetic behaviour of installed casing strings are not good enough
to establish accurate uncertainty estimates when drilling parallel to existing wellbores.
Magnetic pole strengths and pole frequencies, which are fundamental inputs in the
uncertainty estimation, are more or less unknown. Field experience have, however, shown
that significant errors can be present. It is therefore recommended to include this error
source in the total error budget, and to make use of a temporary uncenainty estimation
method until the true magnetic nature of installed casing strings have been settled.

Figure 5.22.2-2 Awverage casing induced magnetic conditions while
drilling parallel to an existing casing

A simplified model can be created by assuming that each piece of the casing acts as an
independent magnet bar, where the magnetisation is permanent and caused by non
destructive testing. This is identical to the proven magnetic nature of drill pipes
(McElhinney [14] and Lotsberg [15]), and will result in a random distribution of pairs of
magnetic poles within the installed casing string. The resultant casing field will result in
correlated axial and cross axial effects at the magnetic sensors. There will be a random
between stations ermor propagation due to the random pole distribution.
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The axial field strength uncertainty at the magnetic instrument caused by casing
interference (dB..) is given by

2 ¥ ]
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where dP__is the casing magnetic pole strengths uncertainty, /, the minimum distance
between the old casing and the magnetic instrument, and /. the average length of casing
pipes.

The cross axial field strength uncertainty at the magnetic instrument (dB,.) is further given
by
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dB.c= |2 zj#-! = et 5 +2 ":L-ET——.L: b
kﬁJ[‘"I*—fE} #‘ll{lﬂ-l-wg) u"{ﬂziﬂz) :‘Jr[-ﬂ:ﬂlﬂi]
e 7
= (2| A= | =12 _qp, {5.2.2.2-4)
{ \nfeaa)”) o)

This field uncertainty will affect both the x- and the y- magnetometer readings. Their
orientation with respect to cross axial field direction are unknown. It is therefore assumed
equal contribution on both magnetometers.

For measurements without axial corrections, the azimuth uncertainty caused by an old
parallel casing is given by
8dn By | BdndBe | ddm
M”=EE1—?’{—,=—+ 2, Wea
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B is the local earth magnetic field strength, 4, the magnetic azimuth, / the inclination, and
© the magnetic dip angle. This uncertainty is random between stations.

For measurements with axial corrections, the similar azimuth uncertainty is given by
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5.23.1

i

Collar Misalignments

There are three fundamental types of misalignments associated with directional surveys.
The first two have already been covered, the sensor misalignments (chapter 5.1.1.6) and
the instrument misalignment (chapter 5.1.3). The third type is the misalignment between
the wellbore axis and the instrument axis. This error is created by borehole deformations
or by mechanical forces acting on the drill string or wireline, and is a function of the
wellbore geometry and the bottom hole assembly (BHA). Measurements are often correct
for this error source with help of special programs, which estimates the actual error size.

It is difficult to model this misalignment exactly. Especially at the planning stage, where
no detailed BHA and deformation information are present. The collar misalignment is,
however, a significant contributor in the total error budget, and has to be included in
wellbore position uncertainty studies. This is usually the case even for corrected
measurements where residual errors after correction can have a systematic nature.

Borehole deformations will usually have a random behaviour (wash outs etc.) or be
systematic over longer wellbore sections (key-seats, horizontal stress breakouts, etc ).
Random borehole deformations will because of the systematic error dominance have little
effect compared to systematic gravity and bent sub driven misalignments. Longer
key-seats and systematic breakouts are only resulting in negligible differences between the
direction of a wellbore axis and the direction of an instrument axis. Borehole deformations
are therefore not regarded as a significant error source in wellbore positioning.

Mechanical forces are in directional surveying usually divided into vertical and horizontal
components to simplify the gravity treatment. It is therefore also convenient to split the
collar alignment error into vertical and horizontal components.

Vertical Collar Misalignment

Vertical collar alignment errors are usually rooted in gravity, stabiliser forces, axial forces,
and bending moments. The gravity effect should be considered as a bias and corrected for.

Wireline

Magnetic wireline surveys are usually performed in open hole, and centralizers are hardly
never used. The instrument collar will have less diameter than the wellbore, and will
usually rest on the bottom if normal wellbore curvatures are assumed. The vertical collar
alignment error is therefore usually caused by roughness in the borehole surface, and will,
because a random roughness distribution, be random between stations. It is given by

dlyo = arctan 3" ~ 0 {5.2.31-1)

where dr; is the average wellbore radius difference over the actual wireline magnetic collar

length 1.
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MWD

The vertical MWD collar alignment error is often called the sag error. This error is more
complicated than the similar wireline error because it is dependent on the actual used
bottom hole assembly (BHA). Factors that have first order effects on the sag error are the
drill collar stiffness, weight on bit (bending moment), stabilisers, drill bit location (with
respect to the magnetic instrument), and whether or not a bent sub is in use. Thereis a
variety of different possible BHA configurations. It should, ideally, have been
differentiated between all of them in uncertainty studies. Thas is, however, impossible.
Mecessary inputs will usually not be available to persons at the planning stage.

Figure 5.2.3.1-2 Definition of the sag misalignment

The gravity component normal to the wellbore profile is the fundamental force associated
with the sag error, at least for standard rotary drilling where no bent sub is in use. The
inclination uncertainty caused by the sag is therefore assumed to be proportional to sin(7)
(Wolff [6]), and is given by

dlrm = sin fds, {5.23;-2}
where dfs, is the average sag for a large number of surveys reduced to the horizontal.

The sag error is a bias, and will therefore always be systematic.
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The sag error has, however, for many years been recognised as a major contributor to the
inclination uncertainty. It is therefore a common practice to make estimates and correct for
this error. Corrections are usually calculated with specially designed computer programs.
They are based on the same theory as used in programs for drill string design. No available
sag correction method is capable of removing all errors. There is always some residual sag
left after correction. This residual sag is caused by a natural spread in material properties
etc. It is therefore gravity dependent, and will have the same sin() dependency as the
uncorrected error. The residual error will remain nearly constant as long as the drill string,
the mud, etc., are unchanged. Residual errors after sag comrection will be systematic
between stations within surveys, and random between surveys. The corrected sag
uncertainty is then given by

dl o = sin Ids, £5.2.3.1-3}

where df, is the expected residual sag uncertainty after a sag correction in horizontal
wellbores.

Horizontal Collar Misalignment

Horizontal collar alignment errors are caused by bending moments due to horizontal
wellbore curvatures and dnll string buckling. Buckling is an unpredictable gross error
condition, which it is impossible to include in uncertainty estimations. It must be
controlled through quality control procedures. Bending moments is only significant for
large horizontal curvatures. Large horizontal curvatures 1s, however, unusual, and
horizontal collar alignment uncertainties can be omitted for all practical purposes.
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Errors in Gyro Tools

Gyro tools are usually equipped with two or three accelerometers, and one, two or three
rotor gyros. The accelerometers are used to find the inclination (/) and the high-side
toolface (t). The gyros are together with the accelerometers used to find the true north
azimuth (4). One instrument type do also, as it will be shown, make use of gyro
measurements in the inclination determination.

Weighting functions will in the following be derived for the most commonly used gyro
instruments in the Norwegian North Sea sector. The different uncertainty eguations will
because of similarities be organised after emor sources, and not after instrument type. It is
therefore necessary to pick equations from different sub chapters to form a complete set of
weighting functions for a given instrument.

Tool Uncertainties

Sensor Uncertainties

There are three principal sensor dependent error types associated with gyro instruments_ It
is errors within the accelerometers and gyros themselves, errors associated with the
alignment of the sensors within the instrument, and errors originating from the electronics.

Accelerometers

Gyro instruments are designed to be run both stationary and continuous. Accelerometers
react differently in stationary measurements and in measurements taken during significant
movements. It is therefore necessary to distinguish between stationary and continuous
measurements in uncertainty studies.

Stationary Measurements

Accelerometer errors in gyro instruments consist, like in the magnetic case, of random
components, biases (1),), sensor induced linear scale factors (u.), gravity induced linear
scale factors (v;), and second order scale factors. The second order- and the random
components are, as for magnetic instruments, without significance in wellbore positioning.
This conclusion is based on the assumption that instruments are run according to standard
operational procedures, which include repeated initialisation measurements (to force the
resultant random effect down to a level where it is without significance) etc.

The gravity induced scale factor uncertainty is given by
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dog=T {6.1.1.1-1}
where G is the local gravity, and 4G its uncertainty.

The bias and the sensor induced scale factor uncertainty are again systematic between
measurement stations as long as the same instrument is in use.

Most gyro instruments are equipped with from one to three accelerometers mounted along
different principal axis. The equations derived for magnetic instruments to find the
different accelerometer uncertainties can therefore also be used for gyro instruments. The
gyro accelerometer uncertainties are then given by

dgxl :d:nn {6.’1.;-2}
dgx = g-d0, = -Gsinfsintdu, {6.1.1.1-3}
dgs = g4 = —Gsinlsintdog f6.1.1.1-4}
dgy =dna {6.1.1.1-5}
dgy = gy, = —(Gsind cos tdug {6.1.1.1-6}
dgys = gydug = —Gsinlcos 1dug §6.1.1.1-7}
dg =dn. {6.1.1.1-8}
dgs = gdu, = Geosldo, {6.1.1.1-9}
dg;; =g,du;_: =Geosldog {ﬁ.f.f.f—fﬁ}

All nine equations have to be used in connection with standard three accelerometer
systems, while the six first are necessary for standard two accelerometer systems, and only
the latter three for single accelerometer systems.

=

Figure 6.1.1.1-1 Accelerometer mounting in standard three-, rwo- and single
accelerometer gyTo instruments
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Continuous Measurements

Continuous gyro tools run in-hole might suffer from large acceleration if they temporarily
get stuck etc. It is impossible to distinguish between such accelerations and the -
component of the gravity field. Axial accelerations will therefore act as an additional
accelerometer error. This error will have a random between stations behaviour, and is
given by

dg.s = da. {6.1.1.1-11}
where da, is the standard deviation of the expected axial acceleration.

Bias and scale factor uncertainties are also for continuous measurements given by equation
f6.1.1.1-1}w {6.1.1.1-10}.

Canted Scientific Drilling Controls Systems

The accelerometers in Scientific Drilling Controls (SDC) gyro instruments are mounted in
a non orthogonal co-ordinate frame (Van Steenwyk [19]), and they are therefore called
canted systems. The x- accelerometer (x"- accelerometer) is canted in the x-z plane, and its
uncertainties are given by

dgyy =dng {6.1.11-12}
dgyn = godug = -G(sindsinteosy + cosIsiny)dv, {6.1.1.1-13}
dgsr = grdug = —G(sinlsin 1 cosy +cos/siny)dug {6.1.1.1-14}

& 15 the canted accelerometer measurement and y is the cant angle (the angle between the
theoretical x- axis and the accelerometer axis).

r’f

Figure 6.1.1.1-2  Accelerometer mounting in canted systems
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Canted systems are also equipped with one y- accelerometer. The uncertainties associated
with this y- accelerometer are equal to those obtained for standard systems, and are given
by equation {6.1.1.1-5} 10 {6.1.1.1-7}.

For continuous measurements, the axial acceleration effect must also be included in the
uncertainty study. It is given by

dg.s = -sinyda; (6.1.1.1-15}

Gravity Inclination

There are many known accelerometer arrangements used in different types of directional
surveying gyro instruments. The inclination uncertainty associated with the most common
instruments used in the Norwegian North Sea sector will in the following be presented on
an instrument type basis. The optimal three accelerometer configuration known from
magnetic instruments is not very common for gyro instruments. It is, however, known n
for example the Sperry-Sun G2 (Russell [20]). This instrument is unusual in Norway, and
is therefore not a part of this study. It is expected that the majority of high accuracy gyro
instruments will be transformed to three accelerometer systems in the near future. Itis 2
strong request for this in the marked, and three accelerometer sysiems are therefore
included to simplify uncertainty software adjustment when this change take place.

Th rometer Systems

Available three accelerometer gyro systems do have the accelerometers mounted along the
principal axes (x, . z). The uncertainty in inclination (df) due to accelerometer
uncertainties, can therefore be estimated with the same type of equations as for magnetic
instruments. Accelerometer uncertainties (dg.., dg,., and dg.) are given in equations
{6.1.1.1-2} 1w {6.1.1.1-11}.

dly = -5, {6.1.1.2-1}
dly =-*=20 g, {6.1.1.2-2}
dly = -=E=gg, {6.1.1.2-3}
dly =-S5 g, {6.1.1.2-4}
dl's =-*¢ldg: £6.1.1.2-5}
dls =-=dg, {6.1.1.2-6}

Continuous tool suffening from larger axial accelerations will need an additional
uncertainty term given by

dly) = 3dga =="'dgx {6.1.1.2-7}



Traditional Free Gyros

Old free gyros do usually have two accelerometers mounted along the x- and y- axis. The
inclination uncertainty components caused by accelerometer uncertainties (dg,; and dg,)
given in equations {6./.1./-2} to {6.1.].1-7} can be estimated with the same set of
equations as for magnetic instruments with axial corrections. The mathematical solution
turn out to be identical. The same equations must of course also be used for continuous
three accelerometer gyro systems when axial gravity corrections are applied.

dly = —£2%dg {6.1.1.2-8}
dh = —Zdga {6.1.1.2-9}
dls = —Z==dgy {6.1.1.2-10}
dls =-22dgy - {6.1.1.2-11}
dl = -%d(? {6.1.12-12}

Stationary Gyrodata Instruments

The Gyrodata Wellbore Surveyor and the Gyrodata Continuous Tool, are both in the
traditional design equipped with one dual axis accelerometer package with the two
sensitive axis directed along the x- and y- axis. The design of the new small diameter
version is, however, different from this. It is equipped with two single axis accelerometers
(same sensitivity axis). There is no error theoretical difference between these two
configurations. The dual axis accelerometer has according to documentation given by
Gyrodata very little comrelation between the two sensitivity axis.

The Wellbore Surveyor is a stationary instrument (Uttecht [21]), and the Continucus Tool
has two operational modes (Noy [22]). Stationary measurements used up to about 15°, and
continuous high speed measurements above 15°. Stationary measurements can be used at
higher inclinations if desired. The two instrument types have identical sensor packages,
which means that the Continuous Tool can be looked on as a Wellbore Surveyor, if used to
stationary measurements at higher inclinations. The accelerometer measurements are the
principal source for inclination determination in stationary mode, while both inclination
and /or gyro measurements can be used in continuous mode. The continuous inclination
uncertainty will therefore be covered in the gyro uncertainty chapter (6.1.1.6). Stationary
Gyrodata tools make use of two combined accelerometer measurements in the inclination
determination. The two measurements are taken at different toolfaces (180° apart from
each other). They are obtained by rotation (indexing) of the sensor package inside the
instrument collar, and not by rotation of the collar it self. The following equation is used
to compute the inclination

I=arcs

. J{# :.t—x-.o-m) ?"{Sp.r'l ;.mm} -
in = {6.1.1.2-13}
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Figure 6.1.1.2-1 Relationship between the two measurements
at «ach station in stationary Gyrodata mode

This gives the following inclination uncertainty components when the correlation between
the two measurements originating from the same sensors are taken into consideration

dl, = er @;,JJ-FLJSH.H!ED =0 f6.1.1.2-14}
BRus O xeetin
s R
dfl = %dgﬂf + Exz_‘i{;dgﬂ*‘*“u = s—%:-ﬂlr“"duﬂ. {5. 1’. f.?-f.‘;}
dis = ﬁyl.t + &%dgﬂ.ﬂlm = U ’ {6.1.1.2-16}
ﬂ4=££ﬁﬂt+ﬁdgﬁ,:+lsn=%@e {6.1.1.2-17}

ar : ar ar i ar
dhl = aﬁml B i a::_.“’mfigﬂ,ﬂd&ﬂ x E_.l;:dgyj't 7 a.‘.’r,wlmdg-"a'ﬂlm
= sl {6.1.1.2-18}

T Gees

This shows that the accelerometer biases are without significance for this type of
measurements.

Scientific Drilling Contraols Instruments {(SDC)

Finder and Keeper (gyro instruments from SDC) are usually built with two accelerometer
mounted in a non orthogonal co-ordinate system. The standard design is one y-
accelerometer and one accelerometer (x') canted in the x-z plane. Both systems have
different operational modes depending on wellbore inclination. Finder has two modes, and
Keeper has three.
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The two Finder modes are stationary (up to ca 15° wellbore inclinations) and continuous
high speed mode (above 15°). The stationary mode ( often referred to as gyro compassing
or north seeking) makes use of rotation of the sensor package (carouselling). Four
measurements taken at different toolfaces (90° apart from each other). The y-
accelerometer is connected to a servo motor, which is forcing the y- accelerometer output
to always be as near zero as possible in the continuous mode. The y- accelerometer is
because of this aligned in the horizontal plane during continuous measurements, which
therefore is call the vertical stabilised mode,

The three Keeper modes are stationary (used for initialisation at inclinations below 2°),
continuous high speed low angle (used from initialisation to ca 20°) and continuous high
speed high angle (used above 207). The stationary and high angle modes are identical to
similar Finder modes. The low angle mode is an inertial stabilised mode where the
azimuth toolface is held fixed in space by a servo motor steered by gyro outputs.

If desired, both Finder and Keeper can be used for stationary measurements at higher
inclinations than the upper limits outlined in these standard operational procedures.

Continuous Finder and High Angle Keeper

The inclination is in the vertical stabilised case (Brown [23]) calculated by the following
equation

I = arcsin (—%}i) -y {6.1.1.2-19}

where y is the x" accelerometer cant angle,

The inclination uncertainty due to the accelerometer uncertainties and the cant angle
uncertainty are then given by

dl, = gldgen = —Goomdge 16.1.1.2-20}
dl; = 3dge = g = e d, £6.1.1.2-21}
dir = Zdgys = ";:m dG {6.1.1.2-22}
dins = gLdgsts = =g s {6.1.1.2-23}
dia = Sy = —dy {6.1.1.2-24}

dy the cant misalignment angle. dg,,, dg.., dg,, and dg_, are given in equations
{6.1.1.1-12} 1o {6.1.1.1-15} when the toolface is set to 90°. dg,, is for example equal to
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dgyy = godu, = -Gsin(l +y)du, {6.1.1.2-21}
dl} is usually systematic for all measurements with one instrument, at least in periods
between mechanical adjustments. This means a systematic within surveys and random
between surveys error propagation nature,
Given a negative cant angle, there is no breakdown in the accuracy for horizontal

wellbores in this case.

Stationary SDC Instruments

The stationary SDC inclination is calculated by the following equation

‘Jj{gr'.l"xl’.“i N) :‘*‘{Eﬂ.‘m“ir’,pmj :

[ = arcsin ey {6.1.1.2-25)
/_ High- High-
sii't.l side

Figure 6.1.1.2-2 Relationship between the four measurements at each station in
stationary SDC modes
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This gives the following inclination uncertainties when the correlation between the four
measurements is taken into consideration

T ar
dl = ax_ﬁdgr'l.r +m‘dgﬂ.mm

&r ar -
Yo, B0 + g g1z = 0 {6.1.1.2-26}

&r ar
dl; = —dg tax+ £
% =2: 7T B i 2.+180

s s = S5 (61,0227
dl; =2 d 2
- = aﬂ.r,‘ 823y +m*dgx'3.1+lsn
e R S (611225
diyy = :mi dy {6.1.1.2-29}

This shows that the accelerometer biases is without significance also for SDC tools while
E¥TO compassing.

Continuous Low Angle Keeper

The inclination is in the inertial stabilised mode calculated by

fr[x.:m'ﬁ- G-gig} siny) g
I = arctan —— . {6.1.1.2-30}
| G gL g; coryeg,tiny
where y again is the cant angle, and 7 the toolface (1 = 90°). The inclination uncertainty is
then given by

dl, = B‘E;.r Ex1 = G{Wlfcﬂs'rﬁﬁikhlﬂnﬂ‘%’q e Gm:(hﬂ 1 {ﬁ. 1L.1.2-31}
gL ﬂ' = Si0 T 1

dly = By, 08x'2 = Gioos Toom ysm e wemy 552 = ~Gomii 8+2 {6.1.1.2-32}

&r ot T

dig= % g = Gfmfﬁﬂﬁhhhtsinndg’! =0 {6.1.1.2-33}

dly= Edgﬂ = G{m!mﬁn:fm-gmﬂ@ﬂ =0 {ﬁf f.2-3-f}
| I lo,s = cos I'sin tein p4ain feos y . _sintFy)

iy "1;4?’"3 ¥ 3,989 = Glom fomyaalinriay) 20 ~ " Geasti 20 {6.1.1.2-35}

ar ] min %
dlrll = l?.ﬂ..r Ex'4 = nﬁm!mr‘:hfm(ahﬂdgi‘ = Gm:(kﬂ“igll‘f‘ {6..!’. I.Z“Sﬂ}
dlyy = fidy = ~sintdy = ~dy {6.1.1.2-37}

Canted accelerometer uncertainties are given in equations {6./.1.I-12} to {6.1.1.1-15}.
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Gravity Toolface

The high-side toolface uncertainty will in this chapter be presented for the same
instrument types as presented in the previous chapter (6.1.1.2).

Three Accelerometer Systems. Free Gyros, and Continuous Gyrodata Instruments

The high-side toolface (1) is for all these instruments given by
T =arctan 5 {6.1.1.3-1}

The high-side toolface uncertainty (dt) is then given by

din J 2 sin’tcos v {6.1.1.3-2)

where (7 is the local gravity and / the inclination.

Stationary Gyrodata Instruments

The high-side toolface for these high-side plane indexing systems is given by
1 = arctan 222 8e {6.1.1.3-3}

Lyt re1m

which gives the following toolface uncertainty

= 2 2 Z
_ | #d2a _-'.‘sam..m) (um Mn.um) ; (ﬁign m..m) (ﬁ .m,-_..,g)
dr= J( S * = * £ o Ete e i TN * a!_”,m b s F Bgpnre

FEe

=0 {6.1.1.3-4}

This equation does not give any toolface uncertainty, which it obviously should have done.
Random measurement errors will always be present. They should therefore have been
included in the emror budget in this case when biases and scale factor uncertainties turn out
to be without significance. The toolface uncertainty caused by random accelerometer
uncertainties are given by

s, ) (aw.)z ando,\ 2 (Mlji' .
d‘::J(aﬂl‘) 5 ax-.«..:n # a.s:rt) ¥ asnuilﬁ nm‘b“ {6‘{!"3'5}

where do,, 1s the random between stations accelerometer uncertainty.

Equation {6.1.1.3-2) de= |- +2sin*rcos?tdol




Continuous Finder and High Angle Keeper

The theoretical x- axis is in the continuous Finder and the high angle Keeper modes kept
vertical by z- axis rotations with respect to the instrument housing. The inertial toolface is
measured with a z- axis rotation angle sensor. This angle, which might be important for
steering applications, is not very interesting in connection with position uncertainty
studies. It is not used as input in any angular or position calculations. The "sensor package
gravity toolface", which is maintained to about 90° by z- axis rotations, is , on the other
hand, needed in the gyro azimuth calculation. The "sensor package gravity toolface" fora
vertical stabilised canted system, is then given by

win ],

1 =arccos {-;;" ) {6.1.1.3-6}

and the toolface uncertainty is given by

4 2
d= J (%) ("'3;1 +d§§z+dg?3) = smdna {6.1.1.3-7}
Stationary Scientific Drilling Controls Instruments

The high-side toolface for these canted high-side plane carouselling systems is given by

7= arctan — L orei® {6.1.1.3-8)

e OO PR

The toolface uncertainty is then given by

+ +
L — s L - . Byt

e O T T WIﬂ.-:HJT (a'ﬂa":.u e | e awr&.r::i):
d!_‘j[ Asta ® a‘.',e.m . * e N -

~0 {6.1.1.3-9}
As in the stationary Gyrodata case, this equation indicates error free toolface

determinations. Random accelerometer uncertainties must therefore be included in the
eror budget. This gives the following toolface uncertainty

o J (&) a’f':.]2+(m]=+(a.’,‘::,f = oo, {6.1.1.3-10}
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6.1.1.4 Rotor Gyros

Gyros are designed for measurement of angular rates. Many gyro types are available, but
rotor gyros are with one exception the only used type in wellbore surveying, The
orientation of a rotor gyro is defined by its input-, output- and spin axis (usually aligned
along the x-, y- and - axis). The input- and output axes are placed in the gyro rotation
plane, and the spin axis is identical to the gyro rotation axis. The output axis is the
sensitive axis where measurements are taken. These measurements, which actually are
torgue measurements, are proportional to the angular rate around the input axis.
Directional gyro instruments are usually equipped with one or two rotor gyros, There is,
however, a marked demand for three gyro systems, and such instruments are likely to be
available in the near future. Both single axis and dual axis gyros are in use.

Gyro measurements are together with inclination and toolface measurements used to
calculate the azimuth. This is either done in a stationary north seeking mode (gyro
compassing), or in a continupus mode where relative changes in azimuth are measured.
Modemn high accuracy continuous gyro system have the possibility to work in both modes.
Error characteristics are quite different in stationary and continuous modes, and they will
be handled separately.

For properly calibrated instruments with adequate quality control procedures, gyro sensor
errors can be divided into two classes, mass unbalances and sensor reading errors. Mass
unbalances are a result of imperfect gyro manufacturing, and consists of three parts (spin
axis (M,), input axis (M) and output axis (M) mass unbalances). Their effects on the
azimuth determination are relatively large, and mass unbalances are because of this
modelled in the motion equations. Mass unbalances are changing with time due to time
dependent effects like creep, thermal expansion etc. The uncertainty this creates with
respect to the modelled mass unbalance has to be included in the gyro error budget.

Mass unbalances are usually determined during instrument calibration. Their uncertainties
can therefore be defined as the standard deviation in mass unbalance updates determined
through multiple calibrations with different instruments and variable calibration cycles.
This definition is adequate for surveys with older gyro instruments, but not for modem
high accuracy gyro surveys where the effect of mass unbalance uncertainties can be
reduced through zero velocity updates at regular intervals etc. The effective mass
unbalance uncertainties (M, dM, and dM.) are then reduced compared to what is given by
the definition. For modern high accuracy gyro surveys, it is convenient to define mass
unbalance uncertainties as the standard deviation in calibration mass unbalance updates for
gyro compassing surveys (@M, @M, and dM), and as half the standard deviation in
consecutive zero velocity mass unbalance updates for continuous measurements (dM,,
dM,, and dM.,). Half is used for continuous measurements because effective mass
unbalance uncertainties are near zero immediately after an update, and near the next
measured mass unbalance update immediately before the next update. The measured
update values should be used in stead of statistical figures in final survey studies,

As for mass unbalances, biases and scale factors do also change with time, and the effect
of their uncertainties are reduced through zero velocity updates in high accuracy

nb.no Opphavsrettsbeskyttet materiale
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continuous surveys. It is therefore necessary to distinguish between gyro compassing- and
continuous reading errors. North seeking related error sources are the bias north seeking
dn,, and the linear north seeking scale factor dv,,, and continuous gyro related error
sources are the continuous bias dn, and the linear continuous scale factor du,,.

Random components are, because of the systematic error dominance in longer wellbore
sections, usually without significance in position uncertainty studies.

The principal output from an error free rotor gyro is, according to Savage [24], the torque
vector T (torque on the spinning mass), which is given by

oyl {6.1.1.4-1}

H is the angular momentum vector of the spinning mass, and o, the angular rotation
perpendicular to H. This torque can easily be scaled to an angular rate equivalent, which is
the actual gyro measurement used in this document.

Gyro dependent bias and scale factor uncertainties are in the following given for the
instruments covered in the inclination chapter (6.1.1.2). Scale factor equations are derived
with the assumption that the expectation of mass unbalances are equal to zero for a large
population of tools. This assumption is confirmed by Brett H. van Steenwyk at Scientific
Drilling Controls.

Stationary Gyrodata Instruments

This is a one dual axis gyro instrument with the spin axis aligned along the z- axis (Noy
[22]), see figure 6.1.1.5-1. The scaled stationary Gyrodata gyro uncertainties are given by

Al =dT s = ANy {6.1.1.4-2}
AT = AT x = Tx g {6.1.1.4-3}
Tz = Qcos lcos/cos A cos T —sind sint) + Osindsin fcos T {6.1.1.4-4)
Al 1 4180 = AT ey {6.1.1.4-5}
AT o sain0 = Teziia0@0ng = —dT {6.1.1.4-6}
Txriis0 = —L2cos §(cos [ cos A cos T—sind sin 1) + Qsind sin/cos {6.1.1.4-T}
dTnyl =dTnyl,1 =dr[m {15}[4-«5‘}
dlma = dT oz = Tye@ong {6.1.1.4-9}
Ty« =—L2cos d(cos [ cos Asint +sind cos 1) — Qsindsinisint {6.1.1.4-10}
AT 180 = ATy {6.1.1.4-11}
AT e 2180 = Tre180@0 g = —dTima {6.1.1.4-12}
Tyes180 = Qcos d(cos S cos Asint +sind cos t) ~ Qsind sin/sint {6.1.1.4-13}

~{loosgleosfcosdcost—sind sint) — Dsingsinlcos T

&
|

o

(=1

Page %2  Equation (6.1 1.4-7) Tegeren = L
Equation (6.7, 1.4-13) Tyriizo = Cleos dleos Jeos A sinc +sind cost) + Llsingsinfsine

nb.no Opphavsretisbeskyttet materiale
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a3
€1 is the earth angular rate at the equator, and ¢ the local latitude.
The T, .50 and T, ;.5 measurements are obtained by a 180° indexing from the 7., and 7,

measurements in the high-side toolface plane. The two T, measurements are because of
this fully correlated. The same is the case for the two T, measurements.

Conti 5 ta Instruments

The continuous sensor package is identical to the stationary package, and the continuous
Gyrodata gyro uncertainties (d7,,, @1, dT,, and dT,;) are then given by

Al =i {6.1.1.4-14}
T = Tidhin {6.1.1.4-15}
T, = arsm:-.umfmswﬂmumfm;mw—ﬁndmtmﬁliﬁﬂfmw {6.1.14-16}
A=y {6.1.1.4-17}
T = Tiioeg ‘ {6.1.1.4-18}
s SSEAS s e {6.1.1.4-19}

At i1s the ime difference between two consecutive measurement recordings, Al and AA the
inclination and azimuth change between the same two recordings (stations). It is, with
reference to the standard high continuous measurement recording frequency (5 to 30
meters for standard wellbore curvatures, and 1 to 5 meters for short radius curvatures),
assumed small angular changes and a relative uniform wellbore geometry between the two
stations {no corkscrewing effects etc.). Af and AA can therefore without loss of accuracy
be estimated with the actual survey results in final survey accuracy studies, and by the
planned wellbore profile in uncertainty predictions.

Af 15 usually an unknown quantity in directional surveying. It can roughly be estimated by
the planned or experienced average logging speed (v). and the measured depths at the two
consecutive measurement stations (D, and D,.,). Their difference can for standard
operations (with nearly constant output frequency) be substituted with the average station
separation (AD). Ar is then given by

Atw 2 o 4D {6.1.1.4-20}

tion in nd r
These are in stationary mode basically single axis single gyro instruments, with the spin

axis aligned along the y- axis and the output axis along the z- axis (Brown [23]), see figure
6.1.1.5-2. The stationary SDC scaled gyro uncernainties are given by

Line 1 eartit angular rate af the squator should be carth angular rate




dle = drlcl.l = d‘l‘l...g
dl a =d:rn:§,|: = T.-,‘ld)ng
T.:= Qcosd(cos/cos Asint +sin A cos 1) + Qsindsin/sint

ﬂul.wlm :dTrzl
dl 20180 = T on190@0g = —dT
T:xe1m0 = —C2cos §(cos T cos A sint +sinA cos T) + Qsind sin/sint

=,

AT 1 w50 = di 1

f.me-'; = dfﬂﬂgq = T:_mdl]u
T-vim0 =—Ccosd(cos/cos A cosT—sinAsint) — Qsindsinfcos T
Al et ez = dT ey

Al zaveamo = T,,“mdum =—dl s

Tz xiam = Qcos dlcosfcos A cosT—sind sint)— Qsindsinfcos 1

=,

{6.1.1.4-21}
{6.1.1.4-22}
{6.1.1.4-23}

£6.1.1.4-24}
{6.1.1.4-25}
{6.1.1.4-26}

{6.1.1.4-27}
{6.1.1.4-28}
{6.1.1.4-29}

{6.1.1.4-30}
{6.1.1.4-31}
{6.1.1.4-32}

The T...50 T.cuyso and T ..oy measurements are obtained by 90°, 180° and 270°
carouselling from the T, measurement in the high-side toolface plane. These four

measurements are obtained by the same sensor, and will be fully correlated.

ontinuons Finder and High e Kee

These two instruments are in this mode basically functioning as a vertical stabilised single
axis single gyro instruments with the spin axis aligned along the y- axis and the output axis
along the z- axis (Brown [23]), see figure 6.1.1.6-3. The continuous high angle SDC

scaled gyro uncertainties (47, and 47T,_.) are then given by

Tt = dneg {6.1.1.4-33}
dTea = Tedvg, - {6.1.1.4-34}
T, » AR OOmsbon oo ten biin Y {6.1.1.4-35)

Continuous Low Angle Keeper

This is basically an inertial stabilised single axis single gyro instrument with the spin axis
aligned along the y- axis and the output axis along the x- axis (Brown [23]), see figure
6.1.1.6-4, The scaled continuous low angle Keeper gyro uncertainties (¢7,.., and 47,.,) are

then given by
Al = dNeg {6.1.1.4-36}
Al = Tedve _ {6.1.1.4-37}
T; = -Mm!—ﬂ{mhl;!ﬂu.d-:utmm.l fﬁ I I.'f-.?@}
Page %4 Equaton {¢./. [.4-26) Ti-1m0 = —Llcosf{cos focosdsinTt +sindcost) + (isingsinfsint

Equation {¢.1. [.4-32) Tizvzm = {lcos glcos JeosAcos T —sinAdsint) - Osindsinfcost
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6.1.1.5 North Seeking Gyro Azimuth

North seeking gyro measurements, also commonly referred to as gyro compassing, are
stationary measurements. The directional tool has to stop and rest for a small period at
each survey station. It is therefore like magnetic MWD a discrete surveying technique,
which it is easy to model error theoretically.

North seeking gyros make use of the honzontal earth rotation in their determination. This
is a much more stable reference than the magnetic field used for magnetic MWD.

Stationary Gyroda strumen

-

Torque

Figure 6.1.1.5-1 Gyro orientation in Gyrodata
instruments

The Gyrodata Wellbore Surveyor and the Gyrodata Continuous Tool are both equipped
with one dual axis gyro aligned with the spin axis parallel to the z- axis. Two
measurements are taken at each station (Uttecht [21]). The gyro is indexed 180° in the
high-side toolface plane between the two measurements. The azimuth is then calculated
with the following equation

[fi’;‘r'f,ltqﬁ}:'n ﬂ{fr_g-fyﬁ.m]ws t}]ux I

{Tu—ra,mmjm*"- 7;,1—7,_;4-1)#311!—2{0 sin gy i ]

A = arctan {6.1.1.5-1}

Tees Tecirnns T and T, ..1q are the x- and y- gyro measurements taken 180° apart from
each other, T the toolface, [ the inclination, £) the earth rotation rate, $ the latitude at the
observation point, and A, the gyro compassing spin axis mass unbalance.




96

The azimuth uncertainty is a function of the combined gyro measurement uncertainties
given in equations {6././.4-2} to {6.1.1.4-13}, the toolface uncertainty (dt), the sensor
dependent inclination uncertainty (df}), the latitude uncertainty (), and the gyro
compassing spin axis mass unbalance uncertainty (dM,). The earth rotation rate is well
known, and its variations are so small that the uncertainty is without significance in the
azimuth calculation. The azimuth uncertainty consists then of the following components
(the correlation in each pair of measurements is taken into consideration)

. - : m.(ﬂn:dm::!m:d +in § 3in foos Joos 4
S = )

_ ) - cos doas [ cosdeos]

5 tntmtlm it Ny, £6.1.1.5-2}
dAg =%ﬁﬂu+ﬁﬁmiﬁﬂﬂ =0 {6.1.1.5-3}
ddy = %ﬂﬂt * 5:‘1:%1;11'?:-::2.“131: = —m‘mn—m%m {ﬁ-"' I'j""}
dA g =§'?'—A;:drm-l,t+a$_.mdrnﬂ.ﬂlw =0 {6.1.1.5-5}
vy = T+ T = Sttt 515
dAz = Zh-dM,, =224 g, {6.1.1.5-7}
dAy = Ldp = ~nlsad gy {6.1.1.5-8}

dl, is given by

dl,= [dF+di +di? {6.1.1.5-9}

The sensor dependent inclination uncertainty components df, are given in equations
f6.4.0.2-15}, {6.1.1.2-17} and {6.1.1.2-18}.

Equations {6.1.1.5-2} to {6.1.1.5-8} show that the uncenainty associated with this type of
north seeking operations tends towards infinity as the wellbore approaches the horizontal
or the latitude approaches the poles.

The inclination and toolface uncertainties used in equation /6.1.1.5-2} are, as in the
magnetometer case, correlated. It is therefore recommended to divided the d4- term into
three uncorrelated accelerometer uncertainty components. They are given by

o4 ] . . cos § sinSoos A-aind cos [
ddr2 =5 dgas + Eg““‘dgﬂ.um = —sin/sin A sin’ 1= "

PRl ] mim’f
) cos ¢{sin* 4+ces T cos 4 ) sin ¢ sin fcos fos 4
~SinTCOST ey dug {6.1.1.5-10}
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5 - i Joos 4-ab i)
dds 4= %dxﬂ.-. o+ ﬁdgﬂ.mm = —sinfsin4 ws"rmm:fm; = dv,
. cos ¢{ 3in Aecosfcos 4 ) +sin ¢ sin Teos [cos A
+SINTCOS T ey du, {6.1.1.5-11}
— B e poio gestalasdsabess] .
dd7 7 = 35dG =sinlsindA—"———=——dG {6.1.1.5-12}

du, is the accelerometer scale factor uncertainty, and 4G the uncertainty in the gravity.

Accelerometer biases do not result in any gyro compassing azimuth uncertainty for
carouselling systems. They where in chapter 6.1.1.2 and 6.1.1.3 proven not to have any
influence on the inclination or toolface accuracy, and can because of the relationships in
equation {6. /. 1.5-1} neither affect the azimuth accuracy.

dA- ; and dd, , are systematic within surveys and random between surveys as long as
different instruments are in use. dA- ; is systematic within an entire field.

Inclination and azimuth uncertainty components originating from the same error source
are correlated with each other, and should be treated as correlated errors in the position
co-varnance matrix calculation. The following uncertainty components are correlated in
this case

- dl;and d4;; (Both caused by the x- accelerometer scale factor uncertainty)
- dl,and dd,, (Both caused by the y- accelerometer scale factor uncertainty)
- dl;anddd,; (Both caused by the uncertainty in the local gravity)

The Gyrodata Continuous Tool are mechanically identical to the Gyrodata Wellbore
Surveyor, which is purely a gyro compassing instrument. The standard Continuous Tool
running procedure is, however, to make north seeking measurements only at low
inclinations below ca 15°. The presented uncertainty equations will therefore mostly be
used in connection with Wellbore Surveyor surveys and Continuous Tool surveys below
157

Stationary Finder and Keeper

Finder is according to Brown [23] equipped with one single axis y- spin gyro with z- axis
output, and Keeper with two single axis y- spin gyros with orthogonal outputs. The
Keeper does, however, only make use of the z- gyro output in connection with north
seeking measurements. Finder and Keeper are therefore mechanically identical in
stationary mode. Four z- gyro measurements are taken at each stationary station. The gyro
is carouselled 90° in the high-side toolface plane between each measurement. The azimuth
is then calculated with the following equation
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[(Tesomn—Tusezme Jsim o{ T cos 0y 20t oos 7

A =arctan
= | Tunvss—Tewirn 508 o4 TueTu i J3ine-2R sin b sbtupin

(6.1.1.5-13}

Tie: Tovny Tevam and T .5 are the four gyro measurements taken at different toolfaces,
M, the gyro compassing spin axis mass unbalance, and M, the gyro compassing input axis
mass unbalance.

Figure 6.1.1.5-2  Gyro orientation in Finder and Keeper
during gyTo compassing

The azimuth uncertainty will consist of the following terms, when the correlation at each
station is taken into consideration. Gyro uncertainties are given in equations {6.7.1.4-21}
to {6.1.1.4-32}.

é sind in Feos A4si cos §] sin drcos i dcos M 4sind cos A sinfoos
ﬂ1=%df:+1;gdt=— ioaagam foon “""’nﬂl_ .{ }

sin.A{cos § sinfcos A+sin tml}; heoal Smpreal 2
cos oo ] ¥ (6IIJ—14}
dd 6= 'a?—:ltd?"mrl,t + ﬁdfgh&lm
5Tt oo + ST et er0 = 0 {6.1.1.5-15}
dAdy = ?}a':jﬂ'rua.r +§f%d7m“m
Al + T o =~ oy {6.1.1.5-16)
dAzn = go-dMy = %mm {6.1.1.5-17}
ddn = Sdb =LA g {6.1.1.5-18}

dAn = go-dM.s = 240, £6.1.1.5-19}



99

b is the latitude uncertainty, dv,, the gyro compassing gyro scale factor uncertainty, dMf,
the gyro compassing spin axis mass unbalance uncertainty, and dM; the gyro compassing
input axis mass unbalance uncertainty. d/, is given by

dl,= JdI} +di}+dl}, {6.1.1.5-20}

where the sensor dependent uncertainty components (dl-, d/ and dl,;) are given by
equations {6.1.1.2-27}, {6.1.1.2-28} and {6.1.1.2-29}.

Equations {6./.1.5-14} to {6.1.1.5-19} show again that the uncertainty tends towards
infinity as the wellbore approaches the honizontal or the latitude approaches the poles.

The inclination and toolface uncertainties used in equation {6.1. /.5-74} can of course, like
in the Gyrodata case, be substituted with uncorrelated accelerometer uncertainties to
overcome the problem with inclination and toolface correlation. ¢4 will then be divided
into three uncorrelated terms, which are given by

ad
a“:’_!-m

ad ad
dds ;= a::, tdgrf:,: i e g1 1a150 + ""——“J‘_ B2 T
i ,cos §sinJcos 4~singcos ] ; :
a

dgx2,0e7m0
{6.1.1.5-21}

= =sinfsinA T

cot f sin Joos A-sing coa T
Gems beos] dG

dA7 7 =sinlsind {6.1.1.5-22}

sin I'sin A{cos §1in foos A+sin b cos NEmany
dd?-n = T dy

{6.1.1.5-23}

du, is the accelerometer scale factor uncertainty, dG the gravity uncertainty, and &y the
cant angle uncertainty.

dA; ; and dd, ;, are systematic within surveys and random between surveys as long as
different instruments are used. d4; , is systematic within an entire field.

The following uncertainty components are correlated, and should be treated uncorrelated
in the position co-variance matrix calculation.

- dl;andd4,;  (Both caused by the x"- accelerometer scale factor uncertainty)
- dl;and d4;;  (Both caused by the uncertainty in the local gravity)
- dl,; and d4, ,; (Both caused by the x- accelerometer cant angle unceriainty)

The Keeper is according to the manufacturer (Brett H. van Steenwyk) designed mainly as
a continuous tool, and is normally not used for Gyro compassing although it has the
possibility to function also in this mode. The presented equations will because of this
mostly be used in connection with Finder surveys for inclinations up to ca 15° (where gyro
compassing is the preferred running mode), and during initialisation of both systems.
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6.1.1.6 Continuous Gyro Inclination and Azimuth

Continuous gyro systems do not like gyro compassing systems stop at each survey station
to take direct azimuth measurements. They do instead measure a continuous change in
azimuth (AA) as the instrument moves down the wellbore. These systems have therefore a
fundamental different behaviour compared to what was expected in the derivation of the
Wolff deWardt theory. It will, however, in the following be shown that it error
theoretically is possible to describe continuous gyro instruments as discrete measurement
system. This will make it possible to include them in an new improved Wolff deWardt
theory. Necessary weighting functions will be derived in the coming sub chapters.

By knowing an initial reference direction (4,), the azimuth can be calculated by
A=Ag+Ad {6.1.1.6-1}

The azimuth change over a time period f sensed by a continuous gyro is given by
Ad =g | {%)dr {6.1.1.6-2}

where 2 is the time derivative of the azimuth

The azimuth change over the small wellbore section between measurement station j-/ and
J is then given by

N
Adj=, | 'J(i—’,'_,ldf {6.1.1.6-3}

Figure 6.1.1.6-1  Definitions of station based measurements in
connection with continuous gyro surveys
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Equation {6.1.[.6-3} can be simplified if it is taken into consideration that the azimuth
change between two consecutive stations (7 and j+/) usually is small (maximum a few
degrees) and uniform (no significant angular oscillations and cork screwing effects etc.) in
directional surveys. This is the case even for short radius wellbore sections, where the
standard station separation of 10 or 30 meters usually is reduced to avoid large model
errors in the minimum curvature calculation.

Ad;= Ay {6.1.1.6-4)

Al is defined by Af; = f-f,, where {,, and 1, are the recording times of two consecutive
recorded measurements.

Similar simplifications are done inside the instrument, but at a much higher frequency
(smaller time increments), To duplicate this high survey frequency in position uncertainty
calculations is, however, not recommended. Calculations will become time consuming,
and there will be produced a huge amount of data that never will be used. The wellbore
profile is only represented by angular measurements at recording stations, and it is only
angular uncertainties at these points that are transferred into position uncertainties.

Recording times (7, and ) will usually be unknown in connection with continuous gyro
uncertainty studies. The time difference can, however, as in the continuous gyro scale
factor uncertainty calculation, be estimated by the average logging speed (v) and the
measured or planned depth difference between consecutive recording stations (AD,).

A=t {6.1.1.6-5}

It will usually not be necessary to distinguish between different time increments. There
will only be minor differences due to standard running procedures that shall secure against
unwanted axial accelerations and large differences in the spacing between measurement
recordings. The individual time increments Af; can because of this be substituted by an
average time increment Af in error analysis. The azimuth at time ¢, (measurement station j)
is then given by

A= Ao+ Th, My~ Ao + Az, (%) £6.1.1.6-6}

The total azimuth uncertainty at station j caused by gyro errors will then become

ddj= "(cifrin)2 +[2L]cifldx)2 = J{ﬂ'-‘ln]z +(M§:L, %)]z {6.1.1.6-7}

The reference uncertainty (dA,) will be described in the reference error chapter (6.2.1),
and the continuous uncertainty ( AfS.,df %)) will be described in the following sub

chapters. The continuous uncertainty is made up of many independent error sources. It
should be divided into uncorrelated uncertainty components. Each component should be
propagated independently to the final position, and then root sum squared (RSS).
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Some continuous gyro systems can also measure changes in inclination and toolface with
the gyros. Similar mathematical derivations as for the azimuth change vields

Ij=To+Zh Aly = Iy + AfZy, (““) {6.1.1.6-8}
=0+ B, Aty v + A () {6.1.1.6-9}
di; ~ J (o) + (a:z’ma(”’*)] (6.1.1.6-10)
dt; = J @+ (ahd(52)) {6.1.1.6-11}

Gyrodata Continuous Tool

The Gyrodata Continuous Tool is, as stated earlier, equipped with one strap down dual
axis gyro aligned with its spin axis parallel to the z- axis. This system do in continuous
mode, measure both azimuth and inclination changes with this gyro. The initial azimuth is
found by gyro compassing, and the initial inclination by indexing accelerometer
measurements. The continuous azimuth (initial azimuth plus accumulated change in
azimuth) can at any time be reset to the result of a new gyro compassing measurement.
This measurement should be taken with initialisation quality. Similar can the continuous
inclination be rest to the result of a new indexed accelerometer based inclination
measurement. [t is in both cases important to be aware of the horizontal wellbore

singularity.

Making use of equation {6./.1.4-1} gives the following changes in inclination Al and
azimuth AA; berween measurement station j-/ and j (time difference Af).

Aly=,, | ¥ ( ]df

= AT sint;+ Ty c08 1+ Qcosdsind; + Mecostcosl; —Mysinteosf,) 6.4 1.6-12}

ay=, [ (e

= Af  ~Teos 1Ty s v +Hleos § cos [oos A +0 sin g sin [ obMsin 75008 [ kM, cos jcos [hMsin
sin f;

{6.1.1.6-13}

T.; T, 1;, A; and 1; are the two gyro outputs, the inclination, the azimuth and the toolface
at measurement station j; ¢ the local latitude, 2 the earth rotation rate, and M, M, and M.
the mass unbalances.

The sensor dependent continuous inclination uncertainty components at measurement
station j are then given by the following set of equations. It is in the mathematical
derivation assumed that mass unbalances are small compared to earth rate, that the change
in azimuth between two measurements is relatively small, and that the geometry of the
traversed wellbore section is relatively uniform,
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o o
dh}‘;:w [ drg}—cﬂ|3g_|+ﬁ-’7;—'drj
~dly3p1 — (Adjsinl; - Af(cos dcos[icos A; +sindsind)dr;  {6.1.1.6-14}

2
{ig’“'l =d'r“.}*| +ﬂf%ﬂn| ‘r‘-:«!irlq.j.,l +ﬂf$iﬂ'll'.}‘dr.:ﬂ {ﬁ.f.i‘.ﬁ‘jﬁ}
3
dlysy=dlysj +ﬂf—“dg Ten =dlysyy +AtsintdT s f6.1.1.6-16}
Eirm,! "l’i!rm 2y +ﬂf éd-T exl ﬁd!'|5r| +ﬁ:costdeq1 {ljff'ﬁ—f?}
dlyrj=dhspm +mﬁdﬂ-ﬂ = dlj7p + AfcosT;dT 50 {6.1.1.6-18}
-ﬂ‘!‘[r |
dl s =dl 51 +Al5-dd = dl g 1 — AfQsing sin 4 {6.1.1.6-19}
dls;=dliss -Lﬁt—dMg. = dl g 1 + At cosTcos T;dM; {6.1.1.6-20}
=dle1 +drw M = dlag 1 — Af cos [isin 1M {6.1.1.6-21}
ﬁ:‘
dlyy = dlay 1 + AimedA e dlyy oy + AtQcos b cos AjdA o {6.1.1.6-22}

A4; can be estimated by the measured or planed azimuth change between measurement
station j-/ and j. d7,, dI_,, dT, and dT,. are the continuous gyro bias and scale factor
uncertainties. They are given in equations {6.1.1.4-14} to {6.1.1.4-19}. db is the latitude
uncertainty, and d\d, the continuous input axis mass unbalance uncertainty. The toolface
uncertainty (d7) is given by equation {6./.1.3-2}, and the sensor dependent azimuth
uncertainty at measurement station j is given by

dds5 = 1} E_,.;(JA.,..) {6.1.1.6-23}

where the different dd,;; are given in equations /6. /. 1.6-25} to {6.1.1.6-32}.

The previous station uncertainty components (df;~, ) used in the gyro based inclination
uncertainty equations ({6.1. 1.6-14} to {6.1.1.6-22}) do all have to be reset to zero at zero
velocity update stations where indexed accelerometer measurements are taken. A new
inclination reference uncertainty has, however, to be calculated. The gyro based
inclination uncertainty equations do not show any inclination dependent singularities for
horizontal wellbores. The Gyrodata Continuous Tool can therefore measure inclinations
with high accuracy even in horizontal wellbores.

Continuous inclination uncertainty components are, due to the time integrating process,
systematic between stations. Gyrodata claims that the systematic effect is effective only
between zero velocity update stations, and not during complete surveys. This conclusion is

nb.no Opphavsretizbeskyttet materiale
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based on gyro drifis seen at update stations in the field (totally random). This random
effect is, however, not necessarily caused by random drift in the different error
components, as claimed by Gyrodata. It is just as likely that it is caused by toolface
dependent effects. Many errors, which are lumped together into the field derived drift
term, are toolface dependent. Field data show that gyro instruments change toolface
between zero velocity update stations, even if centalizers are used. More research is
therefore necessary to solve this question. It is recommended to treat continuous
inclination uncertainty components as systematic within surveys and random between
surveys until this is done. This to secure against underestimation of the uncertainty.

Zero velocity update

Figure 6.1.1.6-2  Relationship between zero velocity update stations and measurement
stations in high accuracy continuous gyro surveys

Similar conclusions can be drawn for continuous azimuth uncertainty components, which
are given by

o
dA7; = dAzpy + Mdty = dd 75 + I gy {6.1.1.6-24)
o
dc‘im‘j:dﬁ![g_;q +ﬁt'?;{ﬂrm| #de‘fm}[‘—ﬁf%d?-'ﬁl {6!.{6—25}
i
=i +Ari-f-d]"'d = dd o1~ MotdT g £6.1.1.6-26}
.‘if-!m.. dfhg_,h.l +.r_’:‘|.i"“"-“dT el FHMHXH-F—QI—*dTg[ {6.!,!.6—2?}
aﬁ,
MIEU =d.{15JL| +.ﬂ!'?.r:d?-gﬂ #i‘!ﬂdq +ﬂ|!'_"‘d’mr 7 {61!6'23}
Id}
Ay =dAnos + AlGdM i, ~ ddzg sy + BtdM,. {6.1.1.6-29)
ail"l in. § =5t [/
dAdz ;= dda) i +ﬁf—£~dﬁ A l'i.dlz]..;.] +Mﬂm“m ‘l":'::;m Jcm’baﬂ] {6.1.1.6-30}
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&5

Az = dAnjr + DlgdMi ~ ddzyj +ACERY A {6.1.1.6-31)}
J-&
(D ool T,

Az =dds sy + DM = ddzs g + A dM E2aM, {6.1.1.6-32}

oy

P =
dg‘i].;_,' deg.;j.] +ﬂf‘$ﬂ,g+ma‘d{u‘
Ayeos 1+ cos tsh{mg,—ﬁﬂm{,])
51

sl

=dAzsp1 -

B mnjn;{.st AL {6.1.1.6-33}

Al and A4, can for accuracy studies be estimated by the measured or planed inclination
and azimuth changes between measurement station j-/ and j. M, is the continuous spin
axis mass unbalance uncertainty, and df,;, is given by

dl'r_l,l—l = JE_jzﬂH(ﬂ;u-_]) {64’}6-34}

where the different df;; | are given in equations {6./.1.6-15} to {6.1.1.6-21}. The other
uncertainty figures are identical to those used in the inclination uncertainty equations.

The previous station uncertainty components (d4;;) used in the gyro based azimuth
uncertainty equations ({6.1. 1.6-24} to {6.1.1.6-33}) should be reset to the actual gyro
compassing uncertainty if intermediate gyro compassing (with initialisation quality) is
performed.

It follows directly from these equations that the azimuth uncertainty tends towards infinity
for vertical wellbores. This effect explains way the Gyrodata Continuous Tool is not used
as a continuous tool for inclinations below 15°. The presented equations should therefore
only be used in connection with Continuous Tool surveys when the inclination exceed 15°.

The inclination and azimuth uncertainty components at station j-/ (d/, ;, and dd, ;) are
handled as fully correlated errors when used as input in the station j azimuth uncertainty
calculation. This because of the high comelation that exist between these two figures. They
are both based on the same gyro measurements. The correlation between continuous
inclination and azimuth measurements should also be reflected in the position uncertainty
calculation. The following uncertainty components are assumed to be correlated

- dl,;andd4,  (Both caused by the toolface uncertainty)

- dl\;andd4,;  (Both caused by the x- gyro bias uncertainty)

- dlsandd4;;  (Both caused by the x- gyro scale factor uncertainty)

- dl;andd4d,; (Both caused by the y- gyro bias uncertainty)

- dli;andd4,, (Both caused by the y- gyro scale factor uncertainty)

- dl andd4,  (Both caused by the latitude uncertainty)

- dl;andd4..  (Both caused by the x- gyro input axis mass unbalance uncertainty)
- dl;anddd;;  (Both caused by the y- gyro input axis mass unbalance uncertainty)
- dl,,andd4,, (Both caused by the last inclination- and azimuth uncertainty)
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The toolface uncertainty (dt) is derived from accelerometer measurements. df; (equation
{6.1.1.6-14}) and dd, (equation {6. 1. /.6-24}) can therefore be substituted with eight
uncorrelated accelerometer uncertainty components.

[M_,.tn {;—w(wiwl_,m‘&ﬂmj MJ))m llak
x|

di j=dla 10 - =) 1 {6.1.1.6-35}

adsinf A coshcos Loos dssinpsind, ) e,
dls 25=dl3 25 -( { Geml, - dgn {6.1.1.6-36}

(Mﬁmﬁ—m{mim&mjﬁm ' l'n..tJJ]sin-.‘,
Gsinl,

dhs sy=dlis 31+ dg, {6.1.1.6-37}

(atsins-amlcos deos teos A ssingsing, ) Jsin,

dlvz gj=dhz sy + Gl dgyz {6.1.1.6-38}
Al—arleos gsmd, oo,

ddy 1y dds 150+ ( o ) dgs {6.1.1.6-39)
(HJ‘W&B‘W_’]M'IJ

dAzz;=dA7 2+ P dg {6.1.1.6-40}
{H;—Aﬂmi:h.rtﬂ:hg

dA73=dAr 351 — P dgy {6.1.1.6-41}
(M-Aﬂm‘m,}lh %

ddy 4y =dAs a1 - — d; {6.1.1.6-42}

Accelerometer uncertainties (dg,,, dg.., dg,, and dg,;) are given in equations {6.1.1./-2} to
{6.1.1.1-7}.

‘ﬂﬂ‘! thTDugh dlrlj_‘ :-lnd d{‘f}J lhmugh dz‘l;_g are Syﬁtﬂmaﬁc Withln SUrveys and random
between surveys.

The following error components should be treated as correlated errors in the position
co-variance calculation if accelerometer uncertainties are used as input in the azimuth
uncertainty calculation

- dl;; , and d4; , (Both caused by the x- accelerometer bias uncertainty)
- dl;s ;and d4, , (Both caused by the x- accelerometer scale factor uncertainty)
- dl,; ; and d4; ; (Both caused by the y- accelerometer bias uncertainty)
- dl,; ;and d4, , (Both caused by the y- accelerometer scale factor uncertainty)
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Continugus Finder and High Angle Keeper

Finder is, as stated in the gyro compassing chapter, equipped with one z- axis (- spin)
rotor gyro, and Keeper with one x- and one z- axis gyro, both with y- spin. The Keeper do
mainly make use of the z- gyro at inclinations above ca 207 (15° for earlier versions). This
makes it nearly identical to the Finder at higher inclinations. The z- gyro is for both
systems mounted on a controlled motor driven rotary z- axis. This rotary axis is in
continuous mode (high angle mode for the Keeper) forced to maintain a horizontal y- spin
through a feedback loop governed by the y- accelerometer. The two accelerometers are
also mounted on the rotary axis, and the z- axis rotation is controlled by maintaining the y-
accelerometer output as near zero as possible, Vertical stabilised systems are practically
not sensitive to collar rotations, and do only sense azimuth changes. Making use of
equation {6././.4-1} gives the following change in azimuth (AA;) between measurement
station j-J and j (time difference Af).

&, 1 ‘. i . N
“igrl' cos t‘;-T,_.d-ﬂ(mi(uni[rm.éJsiu THsind cos :J-:| +sin$ sin f,sm 1J.)--xu:|..[. [M,cus =M sin l_.]

szﬂf

F sinfzint,
-7, 462 cos 4 cos Tjcos A tsin § sin | +hdysin
= Al— : d . {6.1.1.6-43}

sin [

T., I, A and 1, are the gyro output, the inclination, the azimuth and the toolface at
measurement station j, ¢ the local latitude, €2 the earth rotation rate, and M, and M, the x-
and y- mass unbalances.

//"

¥
Horizontal

Figure 6.1.1.6-3  Gyro orientation for comtinuous Finder
and high angle Keeper

The continuous azimuth uncertainty components at measurement station f are then given
by the following equations. They are, like in the continuous Gyrodata case, based on the
assumption that mass unbalances are small compared to earth rate, that the change in
azimuth is relatively small, and that the geometry of the traversed wellbore section is
relatively uniform.

nb.no Opphavsretisbeskyttet materiale
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Ly 4y 4y
it

2 )
i [ 4
MTJ=‘5(EL1[T?£'J‘+T¢*] =dds4 +ﬂ.!‘"3}~tﬂ,_,-+&.!'—-a1 dt;

A cos [;+A2 cos dsin Leos 4, -sin  coa 1, )

=ddqp -

sinfy =
HAT; - A cos hsin Aj)d; {6.1.1.6-44)

2

Mlﬁj:fid‘jlﬁ.j—l'*dfﬁ:ﬂnl #ﬂlﬁfl-b;if_gﬂﬂi {6.{36-45}
L4

dAyr; = dd 75 +ﬂ-i'j;;-:—d?'t=-: =dAy7p +;£"7Jd?'m {6.1.1.6-46}
Phuc

Az = dAzo s + MordMes = dA sy + AtdM, {6.1.1.6-47}
ﬂfé sinfy—sin § cos ficos

dd ;= dAz o + Atld = ddy j +m(w” fr:;ﬂ; - Aj)d’f* {6.1.1.6-48}
ﬂ% Qcos g cos [isind

ddzsj = dAgar + At rd Ay~ dAzep —N—mgﬂ “dd {6.1.1.6-49}

Al; and A4, can be estimated by the measured or planed inclination and azimuth changes
between measurement station j-/ and j. dT._, and 4T _, are the continuous gyro bias and
scale factor uncertainties given in equations {6././.4-33} to {6.1.1.4-35}. d¢ is the latitude
uncertainty, and dM, the continuous spin axis mass unbalance uncertainty. The toolface
uncertainty (d't;) is given by equation {6. /. /. 3-6}, and the sensor dependent inclination and
azimuth uncertainties ( df,;and dd, ;.. ) are given by

dlyj= Jdi+ dity vl v dPy s+ dly, {6.1.1.6-50}

1 = Jddley +dAY, +dASy +dAD 4 {6.1.1.6-51}

dl;; is the sensor induced azimuth uncertainty components at station j given by equations
{6.1.1.2-20} to {6.1.1.2-24}, and d4;;, the sensor induced azimuth uncertainty
components at station j-/ given in equations /6.1 1.6-44} to {6.1.1.6-49}.

These equations show, like in the continuous Gyrodata case, that the Finder and the high
angle Keeper azimuth uncertainty tends towards infinity for vertical wellbores. The Finder
is because of this usually not used as a continuous tool for inclinations below ca 15°, and
the Keeper is usually run in a low angle mode up to about 20°, Equations {6./.1.6-44} to
{6.1.1.6-49} should therefore only be used in connection with continuous Finder or Keeper
surveys when the inclination is greater than 15° (Finder) or 20° (Keeper).

The continuous azimuth uncertainty components have a recursive nature, and will because
of this be systematic between stations. It is therefore recommended to treat them as
systematic within surveys and random between surveys errors,
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The inclination and toolface uncertainties (df and dt) are once again derived from
accelerometer measurements. a4, (equation {6. 1. I.6-44}) can therefore be substituted with
six uncorrelated accelerometer uncertainty components (the y- accelerometer scale factor
uncertainty has no effect).

Adcos {.+M'i[cus¢iin!ﬁﬂal;—thj oo .{,]

Al i =dds s AP
74 R 0 B G:m.*,m{{w] dg . {6.1.1.6-32}
Adjcos [ +Am cos bsind,cos A —sin g cos ],
dA 25 =dA7 251+ — M[_ i j:fgﬂ {6.1.1.6-53}
Gsintjeo 1)
dds sy =dArap + %ﬂ {6.1.1.6-54}

(o8 1 as2c0s $sin 05 4 s g cos ) s (1+1)

dds yi=ddrqp+ . dG {6.1.1.6-35}
Gsin .ﬂ.m{ﬂ)
Bl cos v AL cos ¢ sin Jcos A ~sin g cos],
dds yy=dAs 141+ _ ’}dgm {6.1.1.6-56}
Gsm{,m(fm}
Adcos TAAD cos §sin Jieos 4 —:intm.f)
dd7 ya5=ddy 1m0 + - E - = {6.1.1.6-57}

sinl;

Accelerometer uncertainties (dg,, , dg,,, dg,» and dg,.) can be found by setting sint=1 (1
= 90° for vertical stabilised systems) in equations §6.1.1. -5}, {6.1.1.1-12}, {6.1.1 1-13}
and {6./.1.1-15}. dG is the gravity uncentainty, and &y the cant angle uncertainty.

dA, ,, is random between stations, and dd, , , dd4; ., d4, , and dA, ;, are systematic
within surveys and random between surveys. d4, , is usually systematic within an entire
field, but can with special pre-job calibrations be partly randomised. The following
components should be treated correlated in the co-variance calculation

- dl,andd4,, (Both caused by the x" accelerometer bias uncertainty)

- dl;andd4,;, (Both caused by the x* accelerometer scale factor uncertainty)
- dl;and dd,, (Both caused by the uncentainty in the local gravity)

- dl;; and d4, ,;, (Both caused by random axial accelerations)

- dl;and dd, ;, (Both caused by the x™ accelerometer cant angle uncertainty)

Continuous Low Angle Keeper

Keeper is, as already mentioned, equipped with one x- and one z- axis (y- spin) gyro. The
two gyros are dedicated to different parts of the wellbore. The z- gyro is the principal
device for azimuth determination for inclinations greater than 20°. The x- gyro is similarly
dedicated as the principal azimuth device for inclinations lower than ca 20°. Both gyros
are mounted on the motor driven rotary z- axis. The rotary axis is in low angle mode
controlled by the x- gyro in such a manner that no z- axis rotations take place with respect
1o inertial space. The gyro toolface (1,) is then measured by the z- axis rotation angle
sensor. The azimuth can then for small inclinations be found by
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A=14-1T {6.1.1.6-58}

or by a more complicated equation for higher inclinations. The inclination (/) and
high-side toolface () are determined through accelerometer measurements.

—

Figurc 6.1.1.6-4 Gyro orientation for continuous low
angle Keeper

This functionality is difficult to describe error theoretically in the same manner as used
previously in this document. Principal error sources are not related to the measuring device
itself (the rotation angle sensor), but to the gyro that is controlling the inertial reference of
the measuring sensor. An indirect approach is chosen in the mathematical derivation to
overcome this problem. It is assumed that the high-side toolface is held at 90° (within the
accuracy of the rotation sensor), and that the x- gyro measures changes in the azimuth.
Such an artificial functionality is found to generate almost the same azaimuth uncertainty as
the true functionality, and is much more easy to work with.

Making use of equation {6./.J.4-/} gives then the following azimuth change A4 between
measurement station j-/ and j (time difference Ar)

& 5 _ [
it ﬂr_-b_rd-a{mﬁm{,mjl—mim{,)m{ﬁ@ﬂmgmxﬁé
.JI =

=
7, ~| cossin [ cos A ~sindoos ], |+cos TS
P o e e (6.1.1.6-59}

cos d,

7; is the artificial sensor package toolface at station j, which is near to 90°.

The low angle azimuth uncertainty components at measurement station j are then given by
the following equations. They are, once again, based on the assumption about small mass
unbalances, small azimuth changes, and uniform wellbore geometry.
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..'M “-"
ddq;= ME), Zdl = dA7p AR —rdl.
Ad mind ~ cmim!cmdﬁ:mi:mg
sddqp + ot - ) = {6.1.1.6-60}
dAMJ iiAIE,;—l +N—drg| Hd.»d],s‘r.] - IdTﬁl {64’15—1‘51}
dd gy =dd 10 -1-.1'.'11'_'5‘1.“J Teg =dd gy _mﬂn‘l {6.1.1.6-62}
.u
ti‘f:u-, —{i‘f:ur[ +.ﬂf Wa, = Cirigu‘rq + AvdM; {ﬁf fﬁ-—ﬁ.?}
e 2 cos ¢ cos 4ain g sin Jjcos.4, )
ﬂzu—dﬂz[rl'#ﬂf dd]ltl’iAnJ.;‘[-M = {61’1"6—64}
J‘ﬁ mhmf_,sm.d
dff;.u:dfijq._;q + Ar=L Y, ;J Ei‘izqr[ + Al T, d"{s,,r-'l {61!6'6‘5}

Ad; can be estimated by the measured or planed azimuth change between measurement
station j-{ and j, d7_, and dT_, are the continuous gyro bias and scale factor uncertainties
given in equation {6.1. 1. 4-24} to {6.1.1.4-26}. di is the latitude uncertainty, and &\, the
continuous spin axis mass unbalance uncertainty.

The sensor dependent inclination and azimuth uncertainties (dl,;and dd4, ;) are given by

dl,j= Jd;+di+di+diyy +dls; {6.1.1.6-66)

ddsj1 = ,}(E‘ﬁs,;-l +dd gy T Ay +dAY {6.1.1.6-67)

where dl;; is the sensor induced azimuth uncertainty components at station j given in
equations {6.1.1.2-30} to {6.1.1.2-34}, and d4;;, the sensor induced azimuth uncertainty
components at station j-/ given in equations {6./.1.6-61} to {6.1.1.6-63}.

This shows that the low angle Keeper azimuth uncertainty tends towards infinity for
horizontal wellbores, which is in total contradiction to the high angle mode that tends
towards infinity for vertical wellbores.

The low angle azimuth uncertainty components are, like in the high angle mode, usually
systematic between stations within surveys, and random between surveys.

The toolface uncertainty is not included in these equations, but must of course affect the
azimuth accuracy as for other gyro based azimuths. It has its origin in the accuracy of the
z- axis rotation sensor, and will therefore not be part of the gyro integration process. The
low angle toolface dependent azimuth uncertainty can therefore be estimated by

dAas; = cos [ydt, {6.1.1.6-68}
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where df, is the uncertainty associated with the z- axis rotation sensor readings when the
control loop is active and regarded as free from gyro errors.

The inclination (/) is derived from accelerometer measurements. dd4, used in equation
{6.1.1.6-60} can therefore be substituted with five uncormelated accelerometer uncertainty
equations.

Adysin cuim!}mdﬁﬁn?sh{,)

dds 1 =dds 14— o o) dg {6.1.1.6-69}
M_,;in{,—bﬂ]{cns*msf,tudﬁsinhin{,) =
dA7 5 =dd7 251 — ey o dg 1 {6.1.1.6-70}

(M}Sin I—Ar{cos deos {,md_,—umtrin{.}} sy} -
dds 7j=dAs 701 - Gom Ity dG {6.1.1.6-71}

adjsin [~r62 cos b cos [jcos A +singsind] )

dds nj=dds 1140 — Py 24 {6.1.1.6-72}
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The three accelerometer uncertainties (dg,;, dg., and dg.,), are given in equations
{6.1.1.1-12}, {6.1.1.1-13} and {6.1.1.1-15} when cost = 0.

dA, , is random between stations, d4, , and d4, , are systematic within surveys and
random between surveys, and dd, ; is systematic within an entire field.

The following error components should, like in the high angle case, be treated as
correlated errors in the position co-vanance calculation

- dlyand d4,,  (Both caused by the x™- accelerometer bias uncertainty)

- dl;andd4;, (Both caused by the x- accelerometer scale factor uncertainty)
- dl;and d4,,  (Both caused by the uncertainty in the local gravity)

- dl,, and d4, ;; (Both caused by axial accelerations)

- dh, and d4, ,; (Both caused by the x- accelerometer cant angle uncertainty)

Sensor Misalignments

Accelerometers

Like in the magnetic case, accelerometer misalignments are usually not significant error
sources in gyro systems. The only exception is for canted systems, where the canted
accelerometer misalignment must be considered. This error source is, however, due to its
direct input into the inclination equation, already covered together with other
accelerometer errors in chapter 6.1.1.2.
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A study similar to the magnetic accelerometer misalignment study, shows that gyro sensor
misalignments in most cases also can be omitted. This is the case even for vertical
stabilised systems like the Finder system from Scientific Drilling Controls, where the
high-side toolface plane misalignment turn out to be a significant error source. This error
is, however, identical to the toolface uncertainty, and is already included in the total error
budget (chapter 6,1.1.3).

6.1.2  Electronics Dependent Uncertainties

Gyro errors connected to the electronics can also be described in form of biases, scale
factor errors, and random noise, where the noise usually is without significance in the total
error budget. Electronics biases and scale factors can be modelled by the same kind of
equations as for magnetic instruments.

It is once again difficult to distinguish between sensor errors and electronic dependent
errors in the calibration / qualification process, and it is therefore recommended to lump
them together to combined axial biases and scale factor uncertainties.

6.1.3  Instrument Misalignment

The misalignment between the sensor package z- axis and the principal instrument axis is
an identical error source to the similar magnetic error source. It can therefore also be
described by two uncorrelated orthogonal components. This results in two uncorrelated
inclination uncertainties (identical to the two similar magnetic inclination uncertainties
given in equation {5.[.3-1} and equation {3./.3-2}), and two uncorrelated azimuth
uncertainties {identical to the two similar magnetic azimuth uncertainties given in
equation {3./.3-3} and equation {3.1.3-4}).

6.2 Environmental Uncertainties

6.21 Continuous Reference Uncertainties

It is earlier shown (chapter 6.1.1.6) that continuous gyro systems perform indirect azimuth
measurements, and that the azimuth is given by

A=Ag+A44d {6.2.1-1}
where Ad is the measured change in azimuth from the starting point, and A4, an

independent derived initial azimuth (at the starting point). The azimuth uncertainty is
given by

nb.no Opphavsretisbeskyttet materiale
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dA = dAq +dAA4 {6.2.1-2}

where dd, is the reference azimuth uncertainty, and dA4 the continugus azimuth
uncertainty (described in chapter 6.1.1.6). The reference direction is usually the same
during an entire survey. The only exception is when intermediate gyro compassing with
initialisation accuracy is performed. This is, however, not a standard operational
procedure, and it is therefore regarded as sufficient to treat the reference azimuth error as
systematic during surveys and random between surveys. Two methods of reference
direction determination are in use. It is optical referencing and independent north seeking
(gyro compassing), which both will be random for a large number of surveys. A tie to old
gyro or magnetic surveys is sometimes also used. This latter method will, however, not be
covered here. It is totally dependent on the accuracy in the old survey, and is not
recommended. Realistic uncertainty figures can not be established without detailed
knowledge about the old survey. Expected gross error controls needed to validate a survey,
like comparison of the known horizontal earth rotation rate with the measured rate, are
also lost.

The Gyrodata Continuous Tool do also make use of the gyro outputs to determine relative
change in the inclination. The inclination uncertainty is then given by

di=dly +dAl {6.2.1-3}

where dl, is the reference inclination uncertainty, and ZA/ the continuous measurement
uncertainty described in chapter 6.1.1.6. The reference inclination may be recalculated at
zero velocity update stations up to a given inclination. Update stations will be unknown at
the planning stage, but can be simulated at regular intervals up to the given inclination
limit. The different inclination references will in a given survey be based on the same
accelerometers. Their uncertainties are therefore systematic within and random between
surveys as long as only one referencing is performed.

Reference errors for continuous gyro instruments covered in chapter 6.1.1.6 are given in
the following subchapters.

Referencing of Free Gyros

The optical referencing method is measurement of the horizontal direction of the gyro spin
plane with respect to a known reference direction with an external horizontal angle
measuning device, This method is usually not very accurate, and is a method that
traditionally has been used in connection with free gyro surveys. The reference uncertainty
is systematic between stations within surveys and random between surveys, and is given
by

dAzs =dA, {6.2.1-4}

where d4, is the uncertainty in the determination of the horizontal angle between the
optical reference direction and the horizontal spin plane.

nb.no Opphavsrettsbeskytiet materiale
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Referencing of Finder a r

Repeated gyro compassing measurements prior to switching to continuous mode is called
a continuous gyro initialisation. All known systems from Scientific Drilling Controls
(Finder and Keeper), make use of this technique. The total gyro compassing uncertainty at
the initialisation station is then equal to the reference uncernainty, and is given by

dAzs = JdA2 + dA; + T (dAT) {6.2.1-5}

where d4, are significant uncertainty components in the north seeking reference
measurements given in equations {6./.1.5-14}, and {6.1.1.5-16} to {6.1.1.5-19} Itis
assumed that the different error terms are independent of each other at the initialisation
station. Systematic environmental error terms that also are effective after switching to
continuous mode, are not included in this reference uncentainty. Their effect will be take
care of in the respective systematic error terms.

dA » is a reference error, and therefore systematic within and random between surveys.

Referencing of Gyrodata Continuous Tool

The Gyrodata Continuous Tool do also make use of repeated gyro compassing
measurements as initialisation prior to switching to continuous mode. The reference
uncertainty is then given by

dAz = JdA] +dA, +11\0dd] {6.2.1-6}

where d4, are significant uncertainty components in the north seeking reference
measurements given by equations {6./.1.5-2}, {6.1.1.5-4}, and {6.1.1.5-6} to {6.1.1.3-8 }.

dA., is once again systematic within and random between surveys.

New inclination references can be established at zero velocity update stations through
indexed accelerometer measurements as long as not coming into conflict with the
horizontal wellbore singularity. The associated uncertainty is then given by

dly = Lﬂi +dl: +dl3 {6.2.1-7}

where d, are significant inclination uncertainty components given in equations
{6.1.1.2-15}, {6.1.1.2-17} and {6.1.1.2-18}. I is also here assumed that the different error
terms are independent of each other at the initialisation stations.

dl, is, like dA,,, systematic within and random between surveys as long as only one
referencing is performed. The emor propagation will be more complicated in connection
with consecutive accelerometer based updates at zero velocity update stations.
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Free Gyro Uncertainty

Free gyro is an old instrument class, which nowadays is unusual in the North Sea area It is
nevertheless included in this study. It is intended as a worst case instrument class to be
assigned to old gyro surveys with unknown quality. Such a class is needed for realistic anti
collision studies when planning new wellbores in areas with old existing wells.

Free gyros consist of one rotor gyro which is mounted on a double axis gimballed
platform. The gyro is then allowed to maintain its direction in space as the tool is moving
down the wellbore. The directional change between the gyro and the horizontal
component of the tool axis is a direct estimate of the relative azimuth change. The
azimuth change is measured by sensing the relative position of the horizontal gyro spin
axis with respect to the instrument housing. By knowing an initial instrument reference
azimuth (4,), which usually is established through optical referencing, the momentary
azimuth can be found by

A=Ay+MA {6.2.2-1}
The uncertainty is then given by

dd =dAo +dAA {6.2.2-2}
where dd, (the optical referencing error) was covered in the previous chapter.

A free gyro maintains its orientation in the inertial space and not to the earth surface,
which the azimuth is linked to. This means that the horizontal component of the earth
rotation must be looked at as an error source for these instruments. It is often called gyro
drift, and is strongly latitude dependent (15%hr at the equator and zero at the poles). Free
gyros do of course also suffer from error sources like mass unbalances etc., but these are
not regarded as significant compared to the earth rotation (usually less than 0.5%/hr). At
least not at some distance from the poles (10 1o 15°).

Free gyros are, as already mentioned, not used in connection with high accuracy work any
more. It is therefore not necessary with any accurate uncertainty estimation technique for
this instrument class. The equation proposed by WolfF [6] is regarded as sufficient to keep
track of the position uncertainties associated with old existing wellbores surveyed with this
technique. Old available surveys are located sufficiently far away from the poles (20° or
more) to avoid the polar azimuth singularity, which is not reflected in WolfFs equation.
The free gyro drift uncertainty is then given by

dAz =dAA = -1=d4, {6.2.2-3}

where dd, is the free gyro azimuth drift for near vertical wellbores at a given location. dA,
is latitude dependent.
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Collar Misalignmenis

Directional gyro surveys are traditionally a wireline technique. Surveys have been taken
both in cased and open holes. Newer surveys inside drill pipes, both on wireline and with
battery, are also well known, while surveying while drilling seems to be more unusual.
This fact will probably change in the near future. There are indications that MWD gyros
will become an alternative in the near future. The market seems to be demanding this
solution the sooner the better. MWD surveys will be run on drill pipes, and will therefore
suffer from the same collar misalignments as magnetic MWD surveys.

Vertical Collar Misalignment

Casing or Open Haole

The vertical collar alignment uncertainty is, as for magnetic wireline surveys, usually also
very small for wireline based gyro surveys when run inside casings or in open holes. It can
therefore in most cases be omitted in wellbore position uncertainty studies.

Drill Pipe Wireline Surveys and MWD

The vertical collar uncertainty for continuous wireline gyro surveys mn inside drill pipes is
caused by the vertical deflection between the drill string and the casing or the open hole.
Little is known about this deflection, except that the resultant effect must be averaged out
over longer wellbore sections. The drill string can not disappear out of the wellbore, and
the total contribution to the wellbore position uncertainty must therefore be without

significance.

The vertical collar uncertainty for battery or wet connect gyro surveys run stationary inside
the bottom hole assembly is usually caused by the bottom hole assembly sag near the
sensor package. The uncertainty is therefore identical to the magnetic sag uncertainty
presented in chapter 5.2.3.1, and is given in equation {3.2.3./-2} or {5.2.3.1-3}. A fumre
MWD gyro sag uncertainty will also be given by the same equations.

Horizontal Collar Misalignment

Horizontal collar alignment uncertainties can, like in the magnetic case, usually be
omitted in wellbore position uncertainty studies.
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Depth Uncertainties

Wellbore depth measurements are affected by major ermror sources. A priori and real time
estimates of depth error terms are usually not of the same quality as similar inclination and
azimuth uncertainty estimates. The main problem is that depth measurements are corrupted
by large biases and human gross errors, which have proven to be a significant problem
(Ekseth [25]), esperially in connection with drill string depth measurements. Human gross
errors can usually not be predicted, and will therefore not be included in the following
depth uncertainty analysis. The result of this analysis must therefore only be used when
adequate quality control routines are implemented to secure against human errors. Biases
are included, but should ideally have been corrected for.

The different depth error terms, which are analysed in the following, are in contrast to
angular error terms in chapter 5 and 6 quantified. These uncertainty figures are needed as
input in the derivation of simplified depth uncertainty equations (chapter 7.4 and 7.5). The
simplified weighting functions have the potential of becoming helpful tools at the planning
stage, when the use of the detailed weighting functions are difficult due to unknown input
parameters like drill string properties etc.

It is convenient to divide the different depth error sources into two classes, one reference
error class and one deformation error class. The reference class is dependent on the type of
rig the wellbore is drilled from, and not on the used type of depth measurement, which the
deformation class mostly is dependent on.

Reference Depth

Land rigs and rigs installed on the sea bottom have a fixed depth reference point with
respect to the underlying rock formation. The relative distance between the reference point
and the formation is not significantly affected by earth tides (0.2m), which is the only
possible reference error contributor for these types of rigs. Errors in the determination of
the reference depth are mainly caused by human faults, and are therefore classified as
gross errors and not taken into consideration. The reference uncertainty is therefore
without interest when drilling from land- and sea bottom rigs, and can be omitted in

position uncertainty studies,

The position of a reference point for depth measurements on floaters is not constant with
respect to the underlying rock formation due to water tides (B,), rig heave (f,) and varying
rig ballast (B;). The first two effects do both have a high frequency compared to the
duration of MWD surveys, the second one also compared to the duration of wireline
surveys. The reference depth uncertainty components are then for a MWD survey given by

dDy =i, [dB? +dp? {7.1-1}
dDy=i,dp; {7.1-2}

and for a wireline survey
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dDy=idp) {7.1-3}

dDu=r}Ja’ﬂ§ +dﬁ§ {7.1-4}

i, is a survey type identifier, which is one for depth measurements taken on a floater and
zero else,

dp, is the ocean tide uncertainty (estimated to 1.5m 2a), d3; the rig heave uncertainty
(estimated to 4.0m 2g), and dfj; the g ballast depth uncertainty (estimated to 2.0m 2g).

dD, is usually random between stations, and dDy, is usually systematic between stations and
random between surveys.

o

Balst level
Heave level

Sea surface

r Ocean tide level

Mean sea level

Depth reference

Figure 7.1-1 Depth reference emors for floater depth measurements

7.2 MWD Depth

Depth measurements in connection with MWD are usually drill pipe length measurements
taken at the surface with a measuring tape. The depth measurement will because of
downhole pipe deformations and uncertainties associated with the measuring tape, be
erroneous. Special drill string equipment like jars etc. and lift-off procedures, adds extra
uncertainty to the depth measurement. Size and error propagation characteristics of the
different MWD depth error sources are discussed in the following.

Page 119 Eauptinn {7 {-3) Ay =if%;
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Measuring Tape

High accuracy length measurements with measuring tapes are dependent on a number of
corrections, where the scale factor error, the temperature expansion and the tape sag, are
most important. Such corrections are usually not performed in connection with drill pipe
length measurements, which therefore might have a relatively high uncertainty.

Measuring tapes are made of steel or a combination of steel and plastic materials. They are
therefore subject to temperature expansion (o,=1.2*10°%/°C), which create a thermal
dependent tape scale factor error. This error source is without significance. The drill pipes
will usually be affected by the same thermal expansion as the tape.

A tape scale factor error (du,) is to some degree present in all measuring tapes (Holsen
[1]), and varies slowly with time due to inelastic deformations. The tape scale factor error
will be nearly constant as long as the same tape is used. The tape scale factor uncertainty is
regarded as systematic between wellbores due to 2 high probability of using the same tape
for a longer time period at the same platform. The tape scale factor error can be substituted
with a thermal scale factor error. The reference temperature of the tape has then to be
changed to the temperature where the tape is giving correct measurements. The
accumulated tape scale factor error at measured depth D is then given by

dDIB = Tru-{D {?..2. I-f}

Where T, is the difference between the zero tape scale factor error reference temperature
and 0°C.

Free hanging horizontal tapes are subjected to a sagging effect, and therefore stretched.
The same is the case for free vertical tapes if wind is present during the measurements.
This sag can be up to half a meter, but is in average small since most drill pipes are
measured at the rig floor and therefore free from tape sag. The tape sag depth uncertainty
for one drill pipe can be estimated through an equation given by Holsen [1]. Multiplied by
the number of pipes in the string, this gives the total tape sag error.

dDp=45D {7.2.1-2}
Where s is the sag and /, is the average drill pipe length. The tape sag uncertainty is
because of its bias nature, systematic between surveys.

Telescapic and Suspension Effects

Depth measurements have significant uncertainties due to jar-, accelerator-, pipe tally- and
slips effects. Drilling jars and accelerators have often working areas of approximately 25"
and 17", the pipe tally is often rounded towards whole meters, and slips are set randomly
on the upper pipe. All these four error sources are random between stations and free from

Line 2 paragraph 4 and 0°C. should bz and the surface reference temperature for
thermal drill string expansion.
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angular- and geographical dependencies. They can therefore be added randomly together
into one combined suspension depth error term given by

dDy= [B3+Pl+P2+B2 {7.2.2-1}

where [, is the drilling jar position uncertainty (0.3m 2g), B, the accelerator position
uncertainty (0.2m 2t5), B; the average pipe tally uncertainty (0.5m 2c), and [, the slips
position uncertainty (0.3m 2g).

Drill String Stretch

A drill string hanging down the wellbore will because of gravity be significantly stretched
compared 1o its measured surface length. The stretch is a function of drill pipe type, load
and wellbore friction. The stretch (g,,) of drill pipe number & is found to be given by

= 2 (5 (c05 L~ Ua)Ps ~ Pm)apalpe) - (Ws + F) ) {7.2.3-1}

It is here assumed that the station separation between station k-7 and & is equal to the
length of pipe k. A different station separation will lead to an other upper summation index
than j (the MWD survey station number), which is used here. G (9.78 - 9.83m/s”) is the
local gravity, Ey (2 - 2.25*10'"N/m°) Young's modulus of steel, . the cross sectional area
of drill pipe & (drill pipe of a particular type shall according to the AP] standard have a 5%
uncertainty in thickness), /. the nominal length of pipe &, u, the downhole friction factor
acting on pipe k, J, the downhole inclination of pipe &, p, (7.8 - 7.9 kg/dm’) the specific
weight of steel, p,, (1.4 - 1.8 kg/dm®) the density of mud, ¥, the weight on bit, and F, the
total mud flow induced lift force. These figures are collected by Ivar Haarstad and Atle
Martinsen at IKU Petroleum Research, Trondheim, in an unpublished study for Statoil.

Figure 7.2.3-1 Drill pipes generating stretch in drill
pipe k at measurement station §
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Little is known about downhole friction factors, but it is believed that it is increasing in
building sections (both inclination and azimuth) compared to straight hole sections due to
side wall effects. It is therefore assumed that the friction factor for pipe number & can be
estimated by an equation of the following type

i = Maisindy + p,ﬂ“""‘“"f‘f“"’"*” {7.2.3-2}
where p, (0.15 - 0.20) is the friction factor for a straight horizontal wellbore section, and
W2 (0.1, only a guess because of no available data) is the additional friction factor due to
wellbore curvature for a wellbore section with doglegs of 1° per unit length (pipe).

MWD depth measurements taken when the mud pump is turned on, are subject to three
significant lifting fiorces that tend to reduce the length of the drill string. The three forces
are the drill bit jet lifting force, the collar buoyancy force, and the outer mud induced pipe
shear force. The resultant lift force is according to Rogaland Research (Kyllingstad [26])
given by

Fp = (apo +xa,)¥,D+ 22222 {7.2.3-3}

where a,, is the outer pipe area, a, is the annular area, a, the total bit nozzle area, x the
fraction of drill string shear force relative to total shear force, ‘¥, the annulus pressure loss
gradient, p. the specific weight of mud, Q the mud flow rate, « the bit nozzle angle, and D
the depth. The use of this equation is not very practical in directional surveying uncertainty
estimation. This because many parameters needed in the computation usually will be
unknown. Simulations done by Rogaland Research indicate an increase to the static
buoyancy effect of approximately 1.5% (p;=0.015). It is possible to approximate the flow
lifting force effect by making use of this rough estimate.

The stretch is always positive, and is therefore a biased type error, which it ideally should
have been corrected for. A full correction is, however, not possible because of the
indicated variations in fundamental parameters. There will always be remaining systematic
errors left. The drill pipe stretch uncertainty must because of this be divided into tree parts.
One constant part (always systematic, even between fields), one systematic part
(systematic within and random between surveys), and one random part (random berwesn
stations). The random between station part is mainly caused by variations in drill pipe
properties and local friction. The systematic bias stretch uncertainty at measurement
station j is given by

.e-:; -Er** (E wi((€05 I — Pa)(Ps = (1 +PcPQ)Pm)dpnlpn) = W;) {7.2.3-4}
where the total number of pipes down 10 station j is equal to j.

The following input parameters can be used in uncertainty predictions if detailed drill
string and mud information are unclear: G = 9.81m/s’, E; = 2.12*10"N/m’?, p,, =0.17,

Mz = 0.10, p, = 7.85kg/dm’, p,. = 1.6kg/dm®, I, = Okg (20000 kg for floaters), p, = 0.015,
and p, = 1 for MWD measurements with the pump turned on and p, = 0 if the pump are
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turned off. Standard operational procedure is to lift the drill bit off bottom and work out
torque before taking MWD measurements. There is because of this usually not any weight
on bit when the MWD depths are recorded. The only exception is for floaters where some
weight on bit are left during MWD measurement to secure against downhole movements
during measurements. Cross sectional areas are difficult to generalise on. The distnbution
of drill collars, heavy weight drill pipes, standard drill pipes and thin drill pipes can be
very different from well to well, an is usually a function of both wellbore type and rock
formation.

Equation {7.2.3-4} shows that the stretch is nearly proportional to the product of the
measured depth and the difference berween the vertical- and the average vertical depth for
standard wellbore profiles like vertical and extended reach.

The systematic within and random between surveys stretch depth uncertainty can be found
by making use of equation {7.2.3-4} twice with different input parameters. Once with
average inputs, and once with maximum $5% confidence interval inputs. The average
result must be subtracted from the maximum result to give the random between surveys
uncertainty. The random between stations stretch uncertainty can be computed by a similar
approach.

With the same input parameters as given for equation {7.2.3-1} and an assumed 50%
variation in weight on bit and flow induced lifting forces, the 2o systematic within a
survey drill pipe swretch uncertainty is given by

dDv =2, 255 ((costo - 22) (pe— (14222)pm) Bt) - 2) ~dDin {7.23-5)

The 2o random between station drill pipe stretch uncertainty is further given by

Tl 10G

Dy = T, B (51 (cos 1~ 25 pu— (1 4PepIP=)Dilem) ~ W) ~dDix  7.2.3-6)

Drill String Temperature Expansion

The downhole formation temperature is usually much higher than the surface temperature
where the drill pipe lengths are measured. The formation temperature will propagate
through the annulus mud to the drill string and thereby induce a thermal expansion. It is
complicated to find an exact estimate for this expansion since it involves both the annulus
and the pipe mud temperature gradients. Experience has shown that the two mud
temperature gradients becomes nearly identical after a few full cycles of mud circulation,
and that their average value equals the average formation gradient. The drill siring
temperature can therefore for all practical purposes be set to the average mud temperature,
and the thermal expansion of drill pipe k is then given by

ea = 0pTeDialpe {7.2.4-1}
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where @, (c;,=1.2*10%/°C) is the thermal expansion coefficient of steel, /. the length of
drill pipe k, T, the vertical formation temperature gradient, and D,, the average vertical
depth of pipe k given by

Din="2 cosl; + Z5 fpucosl, {7.2.4-2)

where J; 1s the downhole inclination of pipe .

The vertical thermal gradient is a statistical quantity. It can be quantified with three
figures. One global linear geothermal gradient (7,), a linear systematic wellbore based
departure from the global trend (7,,), and wellbore based random fluctuations (7). The
last term is usually without significance compared to the other two when a nearly constant
mud thermal gradient has been achieved. The global trend is a bias, which it ideally should
have been corrected for. The thermal gradient parameters are estimated to 0.04°C/m (T,
and 0.005°C/m 20 (T,,) or 12.5% of T.. These figures are based on North Sea area data,
and is collected by Ivar Haarstad and Atle Martinsen at IKU Petroleum Research.

The global systematic between surveys drill pipe thermal expansion uncertainty is then
given by

dD = 0 Tys Sy It (2 cos Iu 4+ £ pcos 1, {7.2.4-3}
and the systematic within and random between wellbores thermal uncertainty is given by

dDy =0.125dDy {7.2.4-4}
These two equations show that the thermal expansion depth uncertainty is near to

proportional to the product of the measured depth and the average vertical depth for
traditional wellbore designs.

Mud Pressure Effects

Downhole drill pipes will be exposed to a hydrostatic pressure due to the in-hole mud, and
thereby compressed in all three dimensions. The axial compression of drill pipe k is given
by

et = [nG o 2p D {7.2.5-1}

where G is the gravity constant, £, Young's modulus of steel, v, Poisson ratio of steel, p,,
the specific weight of mud, and D;, the average vertical depth of pipe k.

- - I =1 PS5 Y o
Page 124 Equation {7.2.4-4) dDx=0.1254D 1
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The hydrostatic pressure induced depth uncertainty will because of variations in input
figures consist of a bias, a systematic within surveys, and a very little significant random
between station part. The bias is given by

dDH=EL,!'P*G“—_§T:’ipm :’?'ms.’;ﬁz';'lfﬂmsf,.) {7.2.5-2}

This uncertainty is also near to proportional to the product of the measured depth and the
average vertical depth for traditional wellbores.

The following input parameters can, according to chapter 7.2.3, be used for uncertainty
predictions if detailed drill string and mud information are unknown: G = 9.81 m/s®, E=
2.12*10"N/m?, v, = 0.3, and p,, = 1.6kg/dm’.

The 2¢ systematic between survey part is further given by
dDsr = (Ehs 1 41GU220, (B cos 1y + £ ycos 1) ) ~dDw {7.2.5-3)

There will be an additional pressure inside the drill string that will cause an expansion
when mud is circulated (the ballooning effect). This error source is only applicable for
MWD tools that take measurements with the pumps turned on. The expansion is a function
of mud pump pressure, friction losses, bit pressure drop, and is according to Kyllingstad
[26] given by

Fol
es = (1-2vp)wap(1 - 2 ) 22 £7.2.5-4)

where Ey is Young's modulus of steel, v Poisson ratio of steel, a, the average cross
sectional drill pipe area, k the surface pressure loss factor, /;, half the normalised pressure
loss length, P, the stand pipe pressure, and D the measured depth.

Equation {7.2.5-4} is not practical in connection with position uncertainty estimations. It
involves hydraulic parameters that usually will be unknown to the directional surveyor.
This is special the case in connection with uncertainty predictions at the wellbore planning
stage. Simulations with realistic hydraulic inputs show, however, a trend that does not
differ much from a linear trend for typical wellbore lengths (Kyllingstad [26]). This fact
can be used to create a simplified formula for planning purposes

dDy = igfsD {7.2.5-5}

where f; is the ballooning factor, D the measured depth, and 7, = / if mud pumps are turned
on during measurements and i, = 0 if pumps are turned off. The ballooning factor is
estimated to 0.08/1000m (Kyllingstad [26]) in a standard case where the measured depth
is 4000m, the drill pipes 5", the mud weight 1 5kg/dm’, the flow rate 2500 I/min, and there
is used a three 16/32" bit nozzles.

nb.no Opphavsretisbeskyttet materiale
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dDyy is a bias type uncertainty, which means that it is a systematic between fields
uncertainty. In addition, there will also be random between stations and systematic within
and random between surveys ballooning uncertainties. The random between stations
uncertainty is mainly caused by fluctuations in the flow rate and variations in drill pipe
properties. It is usually without significance compared to the two systematic uncertainties
due to favourable error propagation characteristics. The systematic within and random
between surveys uncertainty is to a large degree caused by change of bit and major
adjustments of mud and flow rates at bit runs when new MWD surveys usually are
initialised. A 50% variation at both sides of the estimated bias uncertainty seem to be a
reasonable 2o estimate when the large variation in drilling conditions in different wellbore
sections is taken into consideration. The systematic within and random between surveys
ballooning uncertainty is then given by

dD - =0.5Dynr {7.2.5-6}

Wireline Depth

Depth measurements in connection with magnetic electronic multishot measurements
(EMS) and gyro measurements are usually performed with wireline length measurements
at the surface. The depth measurement will because of downhole wireline deformation and
uncertainties associated with the measuring device be erroneous. Size and error
propagation characteristics of the different error sources will be discussed in the following.
Two types of wireline depth systems are available. The most common type makes use of
measuring wheels, while the other makes use of magnetic markers installed on the
wireline. The second type is unusual in connection with directional surveying, and will not
be covered here.

Suspension Effects

Wireline depth measurements will usually have a significant random between station
uncertainty due to the wireline suspension (tension sensor etc.) given by

dDyy = Ps {7.3.1-1)

By is roughly estimated to 0.3m 2.

Wireline Stretch

A wireline hanging down in a wellbore will because of gravity be significantly stretched
compared to its measured surface length. The stretch is a function of wireline type,
wireline and collar load, wellbore friction, and previous deformation history. The wireline
stretch consists of two significant parts, An elastic part which always is present, and an
inelastic part which is the dominant on newer wirelines.

Page 126 Equation {7, 2.5-6) dl e = 0,540
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The elastic wireline stretch (g,,) acting on a short (usually equal to the station separation)
wireline element & can be found by the same type of stretch equation as for drill pipes.

Bk = g"—_(z’,;‘({ms In— o) — P}l + W,] £7.3.2-1}

where G (9.78 - 9.83m/s") is the local gravity, E, (0.90 - 1.15%*10"N/m°) Young's
modulus of standard wirelines, a_ the cross sectional wireline area (8 - 12 mm in
diameters), /,, the separation between station k- and , p, the downhole friction factor
acting on element k&, J; the average downhole inclination of element k, p, (44-52
kg/dm?) the specific weight of standard wirelines, p,. (1.4 - 1.8 kg/dm®) the specific weight
of mud, and W, (100 - 400kg) the total instrument collar weight.

The friction factor acting on element & can be estimated through
M= Umsin/e {7.3.2-2}
where p (0.15 - 0.20) is the friction factor for a straight horizontal wellbore section.

The wireline stretch uncertainty must similarly to the drill string case be divided into tree
parts. One bias (always systematic, even between fields), one systematic part (systematic
within and random between surveys), and one random between stations part. The random
between station part is mainly caused by variations in wireline properties and local
friction.

The systematic between field wireline elastic stretch bias uncertainty at station j is given
by

dﬂm = %::i:] !"* (EJH{{W‘SI” = I'L“)(p' = p-}arin) + W:) {?1-3- 2—3}

For uncertainty predictions, the following input parameters can be used if detailed drill
string and mud information still are unknown: G = 9.81m/s°, E_ = 1.04*10"N/m*, u,, =
0.17, p. = 4.8kg/dm’, p. = 1.6kg/dm®, W, = 250kg, and a, = 78.5 mm".

Wireline properties can as indicated vary significantly depending on manufacturer. number
of conductors etc. The 20 systematic within a survey elastic wireline stretch uncertainty
can be estimated by

@M-:% an*(f’;.;((msf,-%)(p"%)'of; '% ~dDyy  {7.3.2-4}

It is here assumed a 50% variation in the mud flow induced uncertainties from survey to
survey.

Similar is the 2o random between station drill pipe stretch uncertainty given by

LO5G

D= 10T (Zo(cos 1~ 25) - poY587) - W) ~Drr - (7.3.2:9
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Inelastic wireline stretch is more complicated to handle since it is a time dependent error
source. New unused wirelines will get a large inelastic stretch, which gradually will
decrease to zero with repeated use. Theys [27] estimates the inelastic stretch at the first run
to about 0.6m per 1000m. How long the inelastic stretch remains a problem is, however,
still not answered. The inelastic stretch will therefore be included in an empirical error
term called repeatability errors, which is based on real measurements, and which is
explained in chapter 7.3.8.

........... — Initial length
15t down hole length

£ 1st return length
2nd down hole length

2nd retum length

Figure 7.3.2-1 Typical wireline stretch behaviour

Wireline Temperature Expansion

The downhole formation temperature is greater than the surface temperature at which the
wireline length is measured. The formation temperature will propagate into the wireline
through the mud, and thereby induce a thermal expansion. Ander [28] gives a wireline
thermal expansion constant expressed in J/°C/N. The wireline thermal expansion must
therefore be proportional to the tension in addition to the temperature. The depth bias at
measurement station j is then given by

Al =t Tgs E'L;(l'wt WiDiz) {7.3.3-1}
where at, = 1.5 - 2.5%10"%/°C/N, L, is the station separation between station k-/ and k, T,
the global vertical formation temperature gradient (0.04°C/m), W, the average wireline

tension in element k and D, the average measured vertical depth in element k. The tension
in element & is given by

Wi = GZL_((c05 I — ) — Prm)selsn + ) {7.3.3-2}

and the vertical depth is given by
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D = 1a==2 + 25 1 cos 1, {7.3.3-3}

The systematic within and random between wellbores thermal wireline uncertainty is like
in the drill pipe case given by

dDyx = 0.125dDxx {7.3.3-4}

/’

Horizontal

Figure 7.3.3-1  Vertical depth at wircline element &

Measuring Wheel Effects

Wearing of a measurement wheel and calibration inaccuracies give rise to a significant
systematic within and random between surveys wireline scale factor depth uncertainty. It is
given by

dD g = dU D {7.3.4-1}

where du_, is the 95% wireline wheel scale factor uncertainty, and I the total depth. du,
is according to Theys [27] 0.0013.

Wireline Twisting

Due to coiling effects, the wireline will be twisted while running into the hole resulting in
a to large depth measurement. Theys [27] estimates this wireline scale factor uncertainty
du,, to between 0.2 and 0.5 per 1000, which means that it both has 2 mean and a spread. It
consists therefore of a bias and a systematic component. The systematic between surveys
uncertainty (bias) is then given by
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dDxxp = @0 s D {7.3.5-1}
and the systematic within and random berween surveys uncertainty by
dD = dV D {7.3.5-2}

v, = 0.0003, dv,,, = 0.0002, and D is the measured depth.

7.3.6  Yo-yoing

Dynamic effects in the wireline will result in position oscillations while stopping to take a
measurement if the instrument is not clamped to the casing or the open hole. The same
effect will also be noticeable in continuous measurements because of random variation in
tension due to temporary stuck pipe etc. The exact nature of this error is unknown, but it is
believed to act as a random between stations wireline scale factor error. Theys [27]
estimates it to about 0.4m per 1000m leading to the following random between stations
depth uncertainty

dD ey = do D {7.3.6-1}

where [) is the measured depth, and dv,, = 0.0004,

7.3.7  Viscous Drag

Wireline depth measurements taken while continuously running into the hole are subjected
to viscous drag errors. The viscous drag leads to a reduction in the measured depth while
running into the hole and to an increase while pulling out. The error has known sign, and
is therefore a bias. It is, however, a complex error source, which is dependent on mud
viscosity, logging speed, and wireline properties. The error is not among the largest
wireline depth errors, and detailed modelling is therefore not necessary, Theys [27] has
estimated it to a wireline scale factor error varying between 0.2 and 0.4 per 1000. This
give rise to a systematic between fields uncertainty given by

dD v = @V D {7.3.7-1}
where dv,,, = 0.0003, and a systematic within and random between surveys uncertainty
given by

dDxxyy = dOwasD {7.3.7-2}

where dv_,, = 0.0002.
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Repeatability Uncertainties

There are a number of error sources associated with wireline depth measurements, that are
extremely difficult to quantify without major research projects. Examples on such errors
are inelastic wireline stretch, slippage between wireline and measurement wheel, wireline
buckling, etc. Common for most of these errors are that most of the effect will appear as a
difference between the total inrun depth measurement and the total outrun depth
measurement. Field data supplied by major wireline operators indicate that the combined
effect creates a significant artificial repeatability scale factor error, which is systematic
within and random between surveys. This field data set is made up of about 40 in / out
runs with different measured depths and wellbore geometry. The scale factor uncertainty
estimated out of these 40 surveys is

du,, = 0.00082 (20). The repeatability depth uncertainty is then given by

dD o = d0weD {7.3.8-1}

Simplified Depth Uncertainty Equations

Most depth uncertainty equations presented in the previous depth uncertainty chapters
involve factors that are directly related to the drilling process (mechanical drill string or
wireline properties, mud programs, formation temperatures, etc.). This is the case even for
the most dominant error sources like the stretch and the temperature expansion. Accurate
input figures, which are necessary to justify the use of such complex equations, are usually
not available during directional uncertainty estimations. In stead of making use of average
values with large uncertainties in these equations, it is recommended to develop simplified
depth uncertainty equations generating the same accuracy. The aim should be to reproduce
the total effect (as given by the accurate set of equations) to within a few decimetres or ca
80%, for all major wellbore designs. Simulations performed with help of equations
£7.1.1-1} through {7.3.3-4} (see next chapter) indicates that this goal can be fulfilled by a
simple random summation function in the measured depth (D) and in the product of the
measured depth (D) and the vertical depth (D,).

dD = |k + (D)’ + (ks DiD)? {7.4-1}

This equation is based on the fact that major depth error sources, according to the depth
error discussion, can be divided into three classes, One reference class proportional to one,
one scale class nearly proportional to the measured depth, and one stretch / temperature
class nearly proportional to the product of the measured depth and the average vertical
depth or the difference between the vertical- and the average vertical depth,

The average vertical depth is, however, difficult to incorporate in the proposed uncertainty
estimation method. Information from below the point of investigation will be necessary,
but is usually not available. This problem can be bypassed by substituting the average
vertical depth with the actual measured vertical depth (or planned depth). This is a major
simplification, but seems nevertheless to give an accuracy within the desired 80%.
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The result obtained with equation {7.4-/} is the total depth uncertainty at a given survey
station. It is made up of both random, systematic and bias uncertainties, The equation is
therefore not suited for use in connection with wellbore position uncertainty calculations,
where the error propagation nature of independent error components are a major concerm.
To solve this problem, the equation has to be divided into the following three independent
classes

- the reference class (proportional to one)

- the scale class (proportional to the measured depth D)

- the stretch / temperature class (proportional to the product of the measured depth
D and the vertical depth ;)

Each of these three classes might further have to be divided into independent error
propagation components. The reference class must, according the discussion in previous
chapters, be divided into a random between stations error component and a systematic
within and random between surveys component. The scale class must also be divided into
two major components, a systematic within and random between surveys component, and
a bias component. The scale bias component is only significant for wireline measurements,
where it is caused by wireline twisting and instrument collar loads. The stretch class has
therefore only one significant component, a bias. This leaves five significant depth
uncertainty components, which it is necessary to treat separately in wellbore position
uncertainty studies. This number can be reduced to four for MWD depth measurements by
making use of the fact that the scale bias is without significance. A similar reduction to
four for wireline depth measurements will lead to increased model uncertainty, because the
scale bias has to be incorporated in the systematic scale and bias stretch components. The
simulations in the next chapter are, however, indicating that the searched accuracy level of
80% can be reached even with this simplification. It will reduce complexity, and is
therefore recommended.

The four necessary independent depth uncertainty components are then given by

- the random between stations reference component 4D, =dk.. {7.4-2}
- the systematic within surveys reference component 4D, =dk,, {7.4-3}
- the systematic within surveys scale component dDs = Ddk,, {7.4-4}
- the bias stretch component dD, = DyDdk,, {7.4-5}

where dk.. is the random between stations reference depth error, dk,, the systematic within
surveys reference depth error, dk,, the systematic within surveys scale depth error, and dk,,
the bias stretch depth error.

The stretch bias can in the future be reduced and transformed to a small systematic within
and random between surveys uncertainty component, if stretch and temperature corrections
are introduced to the depth measurements. This will because of favourable error
propagation characteristics lead to major improvements in the wellbore position accuracy.

nb.no Opphavsretizbeskyttet materiale
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Depth Uncertainty Simulations

To test the quality of the combined effect of equations {7.4-2} to {7.4-5} with respect to
the combined effect of the more detailed depth uncertainty equations, simulations where
made for three different wellbore profiles. A 4000 meter deep vertical wellbore (a), a 4000
meter deep 45° inclined wellbore (5), and a 4000 meter long simplified real wellbore with
both horizontal and vertical sections (c). First, all uncertainty components given in
equations {7././-/} through {7.3.3-4} where calculated for four different scenarios, MWD
drill pipe depth measurements for land / sea bottom rigs (1) and for floaters (2), and
wireline depth measurements for land / sea bottom rigs (3) and for floaters (4). This was
done for each of the three given profiles. Input parameters given in chapters 7.1, 7.2 and
7.3 where used in these calculations. The different uncertainty components where then
summed randomly (root sum square) into the random reference class, the systematic
reference class, the systematic scale class, and the bias stretch class (standard summing
where used for the bias), based on their dominant error propagation nature. The four
constants dk,, dk,,, dk,, and dk,, where then optimised with respect to the simulated results
for the three given profiles. This was done for each of the four scenarios (1, 2, 3 and 4). At
last, the total depth error was calculated by summation of depth error components given in
equations {7. . /-1} through {7.3.3-4} (random or linear summation based on error type),
and compared against the root sum square of equations {7.4-2} to {7.4-3}.

f/’ = = - - n
g g ] Horizontal
= = E = 8 > wellbore

Figure 7.5-1 Wellbore profiles used in depth simulations

The results from the simulations are given in the following two sub chapters. The
differences between the use of the whole range of accurate equations and the use of the
four simplified equations are, as it will be shown, never greater than 6% of the actual error
for MWD depth measurements, and never greater than 15% for wireline measurements.
This is well within the desired 80% accuracy level, and proves that it should be sufficient
to use the four artificial depth error components dk,, dk,,, dk,, and dk,, in wellbore position
uncertainty studies.
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The constants presented in the next two chapters are not meant as inputs in uncertainty
estimations. They are derived only to be used for this confirmation study. Input parameters
must be based on a wider range of wellbore profiles and drill string- and wireline designs.
This will probably increase the uncertainty created by the simplified model slightly
compared to what is seen here, but probably not enough to question the 80% accuracy
level. The number of unusual wellbore designs and drill string combinations with major
deviations from what is used here, are to small.

MWD Simulations

The following depth uncertainty constants for MWD depth measurements on drill pipes
are estimated through a least square fitting of simulations described in the previous chapter

Drepth Constant Land- / Sea Bonom Rig | Floater
k, 0.7 | 44
k, 0 2
k. 4.8*10" 42%10°"
Ky, 4.4*107 3.0*107

which gives the following differences between the simplified depth estimation method and
the optimal solution using the whole range of detailed depth uncertainty equations

Land / Botiom Rig Floater
Measured | Egtimated Deviation Estimated Deviation
Depth | Denth Error [m] Depth Error [m]
W ome] 5 [ os | % [oeme | i | Mea | %
lified lified
Vertical Wellbore
1.000 o T T 6 50 | 52 | o1 3
2,000 30 | 30 | oo 0 61 | 62 [ ot 1
3.000 =l T 79 | 79 | o1
4,000 86 | 91 | 05 | -5 | 106 | 102 | 03 3
45° Inclined Wellbore
1.000 13 [ 12 | o 6 49 | 51 | o2 4
2000 | 25 | 24 | 00 1 57 | 58 | o2 3
3000 | 43 | 48 | 01 3 69 | 70 | o1 2
1000 | 68 | 70 | 22 3 88 | 87 | o1 1
Real Horizontal Wellbore
1.000 14 | 13 [ o1 6 50 | 51 | 01 3
2,000 27 | 2& [ ol 2 58 | 60 | <01 2
3.000 40 | 38 | 02 5 66 | 66 | o0 0
4.000 58 | 55 | 02 3 77 | 726 | o1 2




7.5.2 Wireline Simulations

The following depth uncertainty constants for wireline depth measurements are estimated
through a least square fitting of simulations described in chapter 7.5

Depth Constant Land- / Sea Bottom Rig Floater
kg 0.4 43
3 0 2
Ky 22+10" 22*10
K 4.1*10° 4.7*107

which give the following differences between the simplified depth estimation method and
the optimal solution using the whole range of detailed depth uncertainty equations

Land / Bottom Rig Floater
Measured Estimated Deviation Estimated Deyiation
D[::]h Depth Error [m] Depth Error [m]
Precise | Simp- | Meter % Precise | Simp- | Meter Ya
lified lified
Vertical Wellbore
1.000 3.0 37 0.4 13 6.4 5.7 0.7 12
2,000 6.3 6.1 0.2 3 8.8 83 0.5 5
1,000 9.8 103 0.5 6 11.7 12.4 0.6 -5
4,000 13.7 154 =12 -12 153 17.5 2 -15
45° Inclined Wellbore
1.000 il 2.5 0.5 17 6.5 5.6 0.9 14
2.000 6.0 56 0.4 7 86 7.8 0.8 9
1.000 88 9.2 0.4 -5 10.8 111 04 -3
4.000 12.6 13.5 <018 7 14.2 153 -1.1 -8
Real Horizontal Wellbore
1.000 31 26 0.5 15 6.5 5.7 0.8 13
2.000 62 | 58 0.4 6 8.7 8.0 0.7 8
3.000 93 | 86 0.7 7 11.3 10.4 0.9
4.000 12.3 12.0 0.3 2 13.9 13.7 0.2
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Error Propagation in Inertial Tools

Inertial navigation systems (INS) are navigation instruments widely used in the aerospace
industry. Examples on use in connection with land surveying and wellbore positioning are
also known. INS systems are built with at least 3 sensitive accelerometer- and gyro axis.
Both strapped down and gimballed systems are known. Many gyro types are used in INS
systems ranging from standard rotor gyros, through ring laser gyros to hemispherical
resonator gyros. Two systems designed for wellbore applications are known. It is the
FINDS and the Rigs system. Both are operated by Baker Hughes INTEQ.

FINDS is an old gimballed system equipped with three accelerometers and three rotor
gyros. The system has a large outer diameter (10"), and can therefore only be used in the
top hole section. It is because of this operational limitation seldom in use, and will
therefore not be included in this document.

Rigs (Gibbons [27]) is a strapped down three accelerometers and three ring laser gyros
system. It is smaller than FINDS (5"), and has therefore a wider use. It fits into
intermediate sections, but this system is also to large to fit into many bottom hole sections.

Figure 8-1 Example on sensor mounting in INS systems

INS systems are continuous instruments, that estimate the wellbore co-ordinates directly
through a double integration of sensed accelerations. The gyros are used to keep track on
accelerometer orientations, and not for inclination and azimuth determination as in
traditional directional surveying. Inclinations and azimuths given by INS systems are
derived from the measured wellbore co-ordinates, and it is therefore very important to
distinguish between directional instruments and INS instruments in wellbore position
uncertainty studies.
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The error behaviour of inertial systems are well known and documented. The need for
some kind of aiding to control a rapid accuracy deterioration is the most dominant factor.
This deterioration is caused by the double integration process, which lead to an
exponential growth of the resultant error. FINDS make use of zero velocity updates for
aiding, while RIGS make use of the wireline speed. Zero velocity updates are the most
precise of the two methods, but has the disadvantage that it leads to increased survey time.

A number of INS error analysing software packages are commercially available (for
example one made by Paul G. Savage Minnetonka, Minnesota). They are usually based on
some kind of Kalman filter based Monte Carlo simulations, which are rigid and time
consuming calculations. These programs can of course be used directly in connection with
wellbore positioning uncertainty studies, but this is not recommended. The use of different
program packages are not practical, and should be avoided. A wellbore is often surveyed
with a combination of many instrument types. An integration of INS systems into
uncertainty programs designed for gyro and magnetic instruments is therefore more
suitable. Especially at the planning stage where a large number of wellbore profiles and
survey programs are to be evaluated within a short time period. A quick interactive
response is then also of great importance.

The INS module in an integrated wellbore planning software should be as similar to other
directional uncertainty modules as possible (improved Wolff deWardt methods). This to
secure easy maintenance and introduction of new instrument types. A simplified recording
station to recording station approach should therefore be used instead of time demanding
Monte Carlo and Kalman filter simulations. It will in the following be shown that it is
possible to develop such a method for strapped down systems. Gimballed systems will not
be covered. They are becoming more and more rare in the aerospace industry. New
wellbore INS instruments are therefore likely to be of the strapped down type.

Two different station to station solutions are identified. One co-ordinate based method, and
one inclination, azimuth and relative depth method. The latter alternative is most like the
improved Wolff deWardt theory that is recommended for conventional gyros and magnetic
instruments. The mathematical derivation, including the derivation of weighting functions,
will be given for this method.

Strapped down INS systems make use of gyros 10 measure changes in principal axis
orientations as the instrament moves down the wellbore. The orientations are usually given
in attimde angles to avoid problems with singulanities, but any orthogonal set like for
example inclination / azimuth / toolface can be used. This latter alternative is used in this
study to secure as little difference from gyro instruments as possible. The measured
changes in the orientation of the instrument is then given as a change in inclination (Af), a
change in azimuth (A4) and a change in high-side toolface (At). By knowing the
associated initial inclination, azimuth and toolfaces (/;, 4; and t,), the momentary
orientation can be found by

I=I,+ Al {8-1}
A=Ay +A4 {8-2}
T=To+41 {8-3}
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The inclination and toolface can also be derived from accelerometer measurements. Either
from all three, or just from the x- and y- accelerometer to secure against large axial
accelerations. INS filters are optimising the inclination and toolface with respect to both
gyro and accelerometer measurements. This process can be simplified for the uncertainty
estimation by assurning that the z- accelerometer get less weight than the other two by
introduction of axial acceleration noise, and that the real inclination and toolface
uncertainty are near to the uncertainty of the optimal choice of accelerometer or gyro
based angles.

The gyro based inclination, azimuth and toolface at measurement at station jf are, if the
same assumptions are used as for continuous gyros (chapter 6.1.1.6), given by

fj-'{fu+ME‘L;. % {3"’}
Ay Ao + A1) (%) (8-5}
i (&
Tj=Te+ &IE'L.: (ﬁt) {8-6}
where %1, % an ‘;i are the time derivatives of the inclination, azimuth and toolface at

station j, and Ar the average time difference between two consecutive result recordings.

Equations {8-4} to {8-6} are showing a continuous accumulation of angular uncertainties
as the survey progress down the wellbore. A continuous accumulation of angular errors
throughout the survey may, however, not always reflect the actual error theoretical
behaviour of INS systems. This is especially the case at zero velocity update stations for
zero velocity update systems, where the accumulated gyro based inclination- and toolface
uncertainties should be reset to the accelerometer based stationary inclination- and toolface
uncerfainties. The azimuth uncertainty should simultaneously be reset to the gyro
compassing uncertainty. Wireline aided systems do not have the possibility for these
stationary accuracy improvements, and will therefore have a continuous angular
uncertainty growth throughout the survey as indicated in equations {84} to {8-3}.

Sensor misalignments are, as they where for other types of wellbore surveying equipment,
small and without significance in INS systems. The instrument and collar misalignments,
which are important error sources in traditional directional surveying, are of little interest
in connection with INS systems. The misalignment will be estimated and comrected for in
the optimisation of the z- axis movement, leaving only a negligible residual error.

The measured depth (travelled distance from time 0 to time 7) sensed by an INS system is
further given by

D= (off Jah+at+ara)d {8-7)
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where a,, , a. and a, are the momentary earth fixed north, east and vertical accelerations.

The depth change over the wellbore section between measurement station j-/ and j is then
given by (v, is the momentary velocity at station j-/)

AD; =, 19 ()7 [ raieatad +v ) a &)

Accelerometers do not sense earth fixed accelerations, but inertial acceleration. Measured
accelerations must therefore be corrected for the attraction from the earth, the earth
centrifugal force and the Coriolis force. The Coriolis acceleration can be neglected in
wellbore positioning uncertainty studies. It is usually less than 0.0015m/s*, which is in the
range of good accelerometer biases (0.002m/s®). The uncertainty in the Coriolis
acceleration estimation, which always is performed in INS systems, is much smaller than
this, and therefore without significance compared to the accelerometer biases. The
centrifugal acceleration can be more than 0.03m/s*, which is about 15 times the
accelerometer bias. Uncertainties of a few percent in the centrifugal force estimation might
therefore be significant, and should be included in the error budget. The local gravity in
use (G) is the combined effect of the earth attraction and the centrifugal force. Equation
{8-8} substituted with the three accelerometer measurements (g, g, and g,) and the gravity
((G) at measurement station j is then giving

AD;=,, [* [;,_J"' .f(g, ~G) +(gy-Gy) +(g:=Go) dt' + uH)dr {8-9}
where

Gy ==Gsinlsint {8-10}

Gy =-Gsinfcost {8-11}

G:=Geos/ {8-12}

The output rate from existing wellbore INS systems is high enough to justify a no toolface
rotation and straight line approximation between two consecutive measurement stations.
Equation {8-9} can therefore be simplified to

N1[(x'fﬁu] =+(SJ'J'-G,.J :"(g;.‘-ﬁ:.l}:

AD; = At - +v; {8-13}

where g, 8,5 g.;are the three accelerometer measurements at station j, and v; the
instrument velocity at station j.

The instrument velocity is controlled by the wireline operator or through zero velocity
updates, and is under normal running conditions nearly constant and directed along the
wellbore axis (z- axis). The Rigs filters are for example designed to optimise for z- axis
movements. v; can therefore be substituted with an average theoretical z- axis velocity
measurement (v,) in wellbore position uncertainty studies. The accuracy of v. (dv,), which
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is needed in this approach of position uncertainty calculations, will be dependent on the
aiding system in use. It can be estimated as the uncertainty of wireline velocity
measurements, or half the standard deviation of sensed velocities at zero velocity update
stations. The wireline velocity uncertainty will have the same type of independent
components as the wireline depth uncertainty (a random reference component, a
systematic reference component, a systematic scale component proportional to the
measured depth, and a bias stretch term proportional to the product of the depth and the
vertical depth). The nature of the zero velocity uncertainty is not known, but is believed to
consist of two independent systematic between stations components. One that is random
between zero velocity update stations, and one that is random between surveys.

The measured depth at station j is then given by

' [J(mu)a(w%tm.ﬂ’ -
D!#E;I::J. = + v Af {8-14}

Schouler oscillations and other well known inertial error propagation effects (Savage [24])
are lost in this process, but this is not expected to introduce unacceptable model errors into
the wellbore position uncertainty estimation process. The Schouler oscillation has a much
smaller frequency compared to the zero velocity update frequency that will be needed,
making the Schouler oscillation without significance for zero velocity systems. The same
conclusion can be drawn for wireline systems, where the wireline velocity uncertainty will
dominate over the Schouler effect.

The Rigs System

Two different Rigs systems are currently available. They are equipped with ring laser
gyros from two different vendors. They have different design, and might therefore also
have different error characteristics. The first ring laser gyro type (taken out of production)
is used in all older Rigs system, while the second one will be used in coming tools. All
Rigs surveys older than a couple of years are with the first type, while newer are
questionable. A track of tool information is therefore needed for final survey accuracy
analyses,

The error characteristics of ring laser gyros are well known and documented. Gibbons [27]
indicates that biases and random errors are the dominant error types in wellbore surveying,
Random errors tum out to be big enough to result in a random walk effects that are
significant compared to the systematic bias effect. Scale factor and higher orders errors are
not significant for this gyro type, and should not be included in the total error budget.

Two sets of uncertainty equations are necessary to establish Rigs uncertainties. It is
stationary measurement equations and continuous equations. The stationary equations are
used for initialisation,
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Continuous Uncertainties

The resultant effect of the Rigs filter is that inclination and toolface mainly are determined
through the accelerometer measurements, and the azimuth through gyro measurements.
The inclination and toolface uncertainties are therefore given by similar equations as
standard three accelerometer gyro instruments. The inclination uncertainty components at
station j are then

dl =-<2lgg,, 8.1.1-1}
dl, = —Smlnsge {8.1.1-2}
dly = -=222gg, {8.1.1-3)
dly=-22222dg,, {8.1.1-4}
dl's = "¢ dg: {8.1.1-5}
dls =—*2ldg, £5.1.1-6}
dhy = -2 dg. {8.1.1-7}

Accelerometer uncertainties (dg,,, dg,., and dg.) are given in equations {6./.1./-2} to
{6.1.1.1-11}. The last inclination uncertainty component is random between stations, while
the rest usually are systematic within and random between surveys.

The toolface uncertainty is given by

di= | L 2 gint costudy? (8.1.1-8}
= A Gsiml T e ok
where  is the local gravity.

Making use of the same approach as for continuous gyros gives the following changes in
azimuth AA, between measurement station j-/ and j (time difference AZ).

Mj:{-—l j r)(% dt

.ﬁ( ﬂmeMﬂ]_‘Jﬂnfﬂnyt_f]‘il!:rmu:m{,—mgiﬂ'}
= Af

{8.1.1-9}

where @, ;, 0, and @ are the three continuous ring laser gyro measurements (rotation
rates around the three principal axis) at station j, and Az, the measured change in toolface
between station j-/ and j.

ot

The azimuth uncertainty components at measurement station j are then given by the
following equations. They are based on the assumption that the change in azimuth and
toolface is relatively small, and that the geometry of the traversed wellbore section is
relatively uniform,

. . o i . ) - .
Equation {& [ {-&] drm == + 25in? r cos?rdnd

G s

Equation /% [. [-9} line 2 = —{Ar;cosl, + Adlan;sin o + oy 008 1) sind; — At yoosd) — Aillsing)
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e 4
M?J‘:idjjq +M6T&df;lf+dr%dtj
% ddq; — Adcos  cos Ajdl; +sin[i(Al; - AtQcos dsindjydy;  {8.1.1-10)

24

MEIJ:MIIJ—I +md:—-’-d¢==aﬂ4;1l,_;+ﬁfﬂcns¢d¢ {3!1‘—1':’}
) N

dAzsy = ddzsj1 +Ats-do, = ddys ;- — Atsinljsintydo, {8.1.1-12}
o'

ddze;=dAdas s +ﬂf%d]‘|r=dﬁzg&| — Arsindsin Ty, {8.1.1-13}
o

dﬁgw =£ie43-|u.| +¢'.'.‘.f'a-::dﬁ.— = ﬂ}uj—t - At Siﬂfjﬁﬂﬁtjdﬂ'p {SJ.J'-}J}
P .

MBI,;':MEIJ-[ +M3ﬂ%iﬁ]rﬁi‘f3;j.1-ﬁfsmfjm511dﬂ, f:gff-f.s}
Pt

iﬁjﬂ‘;:i‘lma—.['ﬁﬂfﬁdﬂ'r#dﬁ:nf| +MCOSIJ‘dG, {lg.fuf-.’ﬁ}
ey

ddsz = dAsyj +Atg-dn, = ddas g + At cos [id, {8.1.1-17)

da, and dn), are the ring laser gyro random and bias uncertainties, and d the latitude
uncertainty. The toolface uncertainty (dt) is given by equation {8. /. /-8}, and the sensor
dependent inclination uncertainty are given by

dl,; = fz?_,carfjmf;‘l . {8.1.1-18}

dl; are the sensor induced inclination uncertainty components at station j given by
equations §8.1.f-1}to {8.1.1-7}.

It is, like for the continuous gyro tools, recommended to treat the bias components as
systematic within surveys and random between surveys. The random components are of

course random between stations,

The systematic within and random between surveys reference uncertainty is given by

dAzs = JdA% +E5(d4?) {8.1.1-19}

where dd, are significant uncertainty components in the north seeking reference
measurements given in equations {8.7.2-2} and {8.1.2-4} to {8.1.2-9 } (next chapter).
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The depth uncertainty components can be found by partial differentiation of equation
{8-14} with respect to the four wireline aided logging speed uncertainty components (the
random reference component dv.,, the systematic reference component dv.,, the systematic
scale component proportional to the measured depth dv.,, and the bias stretch component
proportional to the product of the depth and the vertical depth dv,, ). It is not necessary to
include the accelerometer uncertainties. They are without significance in the final result
when the artificial logging speed measurement is used in the uncertainty estimation.
Accelerations are generally small between two consecutive stations compared to the
logging speed, and there are no accelerometer dependent singularities in equation {8-74}.

dDs; = Atdvy {8.1.1-20}
dDgj = Atdv {8.1.1-21}
dDs ;= AtDydva {8.1.1-22}
dDs; = AtD;Dysdv. {8.1.1-23}

where D, is the calculated or planned depth at measurement recording station j, and D, is
the calculated or planned vertical depth at measurement recording station j given by

Dy = r[“‘T’ 2 cusf;) {8.1.1-24)
where [ is the recording station separation.
The sensor dependent inclination uncertainty and the toolface uncertainty used in equation
{8.1.1-10} are derived from accelerometer measurements. Equation {8.1. /-10} should
therefore be substituted with seven uncorrelated accelerometer uncertainty components to

avoid the problem with unknown correlation in the position uncertainty calculation.

Afflcos g cos foos A sin t—cos t,[.ﬁ&—d.ﬂm é m.ﬂ,}

ddy j=ddr 1+ 5 AP {8.1.1-25}
Adcos$ cos [cos A sin t=cos ;| Al=AmD cos §xind ]‘

dd7 a5 =dds 2500 + 5 4 < dga {8.1.1-26}
Alcosd cos Jioos A4 cos Tsiny| Al—Arlcos dsind,

ddzsj=dA73p1 + d G J( L ]@J-l {8.1.1-27}
Adcosé cos [ioos A con tosing | Al—A) cos dsind

dA7 4y =dA7 451 + = [ ) dgyz {8.1.1-28}
Afflcvsésinfoos 4

dds sj=dds 41 + -—'—"Q—-@dg.-u {8.1.1-29}

dA76j=dA7 651 + E_‘i“l;'mdgﬁ {8.1.1-30}

Lol eos § sin Jeos 4
dd; 1 =dds 1 +“‘“‘t§“‘ﬁi{dgﬂ {8.1.1-31}

Accelerometer uncertainties (dg.,, dg.., dg,,, dg,,, dg.;, dg,, and dg,,) are given in
equations {8.1./-1} to {8.1.1-7}.
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dA; ; through d4, ¢ are systematic within surveys and random between surveys, and d4, ,
is random between stations.

The following error components should be treated as correlated errors in the position
co-variance calculation if accelerometer uncertainties are used as input in the azimuth
uncertainty calculation

- dl, and dd, , (Both caused by the x- accelerometer bias uncertainty)

- dfl; and d4; , (Both caused by the x- accelerometer scale factor uncertainty)
- dl; and d4, ; (Both caused by the y- accelerometer bias uncertainty)

- dl, and dA, , (Both caused by the y- accelerometer scale factor uncertainty)
- df; and dA, (Both caused by the z- accelerometer bias uncertainty)

- dlyand dd, . (Both caused by the z- accelerometer scale factor uncertainty)
- dl,;andd4, ;;  (Both caused by axial accelerations)

Stationary Uncertainties

Stationary RIGS measurements are in normal operations only taken in connection with
initialisation of continuous measurements. Stationary RIGS uncertainties are therefore 1o
be handled as reference uncertainties in wellbore position uncertainty studies.

Stationary inclination and toolface uncertainties are given by the same uncertainty
equations as continuous uncertainties (equations {8.1./-1} to {8.1. I-8 }) with exception the
axial acceleration component (equation {8. /.1-7}), which is not applicable for stationary
measurements.

The initial Rigs north seeking reference measurement can in uncertainty estimations
without loss of estimation accuracy be substituted with an azimuth measurement near to
90°. It is given by

: Binsisinl
el arccos (erm,;h;:j:&l 11 fB. f:-."-f}

where @, ®, and @, are the three stationary ring laser gyro measurements (earth rotation
rates around the three principal axis).

The reference azimuth uncertainty components are then given by the following set of
equations (the azimuth is expected to be near 90°).

dAy = Bdl + Lt ~ Skl - dt {8.1.2-2)
ddy = $dp=0 {8.1.2-3)

: : 35 r S8 gy, Bl g e, I
Equation 8.4, 2-3} dAdz = Frdl + Tdv = _dl —cos Jdx




dAzs = 30-do, =~ 2 do, ~ —F B do, {8.1.2-4}
dAzs = fodn, ~ —Fl=dn, {8.1.2-5}
dAxn = -do, ~—3L=do, {8.1.2-6}
dAz = odn, = -G dn, {8.1.2-7}
dAz = #do, = —g2kdo, {8.1.2-8}
dA3 = dn, = ~gZgdn, f8.1.2-9}

Equation {8.1.2-2} may, as for continuous gyros, be substituted with uncorrelated
accelerometer uncertainty components.

" sin#ms{;lint 05T
dds, = [ Grosd ij' )@ﬂ £8.1.2-10}
singeos[sing  cosy
dAs 2= [ Gl;n::m Gmf}‘&ﬂ {312——1}}
smecileost, sy
( Geosd T Gsa 1}) dg.l" |-r3 }.2-.{.?}
smpoos [oosT,
[ T ;,)dgﬂ {8.1.2-13}
singsin [
dArs =5 3dga {8.1.2-14}
mim]’
ddr ¢ =—55y 98 {8.1.2-15}

Accelerometer uncertainties (dg,,, dg.,, dg,,, dg,;, dg., and dg_;) are given in equations
{8.1.1-1} to {8.1.1-6}.

dA; , through d4, ; are systematic within surveys and random between surveys.

The following error components should be treated as correlated errors in the position
co-variance calculation if accelerometer uncertainties are used as input in the azimuth
uncertainty calculation

- dl, and d4, , (Both caused by the x- accelerometer bias uncertainty)
- dl; and d4, . (Both caused by the x- accelerometer scale factor uncertainty)
- dl;and dd, , (Both caused by the y- accelerometer bias uncertainty)
- diyand d4, , (Both caused by the y- accelerometer scale factor uncenainty)
- dl; and d4, (Both caused by the z- accelerometer bias uncertainty)
- digand d4, ; (Both caused by the z- accelerometer scale factor uncertainty)
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Summary

Basic Wellbore Positioning Error Propagation Theory

Errors associated with directional surveying can be divided into three fundamental classes,
errors that are random between survey stations, errors that are systematic between a given
number of stations, and errors that are systematic for all stations in a region (biases).
Biases can usually be estimated and corrected for to avoid problems related to numerical
quantification of skew uncertainties. Residual errors after bias cormrection will for a large
number of surveys be transformed to systematic errors for a given number of stations.

The following error propagation relationships have been identified in connection with
wellbore surveying

- The wellbore position uncertainties caused by random errors are near to
proportional with the square root of the number of survey stations.

- The wellbore position uncertainties caused by systematic errors are near to
proportional with the number of survey stations for traditional wellbore designs.
Systematic error propagation is therefore far more critical than random error

propagation.

- Systematic error propagation is dependent on wellbore geometry. The resultant
effect of systematic errors may sometimes cancel out for example by azimuth
reversal. Randomisation of systematic errors due to toolface rotations are also
commonly seen.

- Systematic errors are usually systematic within and random between surveys,
systematic within or random between wellbores, or systematic within fields.

- Random errors can in most cases be neglected as long as they are of the same
magnitude or less than the systematic errors, and as long as not all systematic effects
are cancelling out (will hardly never happen).

- The final wellbore position accuracy of a gyro survey can be significantly increased
by splitting the entire wellbore profile into consecutive survey sections. Each
section has 1o be surveyed independently with different instruments.

- MWD surveys will only be slightly improved by a similar approach.
- A statistical use of the redundant information in overlapping consecutive survey

sections, or in multiple wellbore surveys, will improve the wellbore position
accuracy significantly in addition to the searched security against gross emrors.
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Weighting Functions

Directional surveying uncertainties are related to sensor errors, different types of
misalignments, and environmental effects like magnetic interference etc, Each error source
propagates into the inclination-, the azimuth- and / or the toolface uncertainties, and
further into the wellbore position uncertainties. Mathematical functions describing how the
different error sources propagates into inclination-, azimuth- or toclface uncertainties are
called weighting functions. They should reproduce any significant changes in sign and size
of the angular uncertainties caused by wellbore geometry, geographic location, thermal
gradients etc.

Wellbore Position Uncertainty Figures

Uncertainties associated with bias free wellbore positions can easily be communicated
through well known statistical quantities like confidence intervals, uncertainty ellipses and
uncertainty ellipsoids. Confidence intervals are convenient for vertical depth uncertainties
and for minimum wellbore separation calculations. Error ellipses are most suited for
horizontal- and normal plane uncertainties {(normal to the wellbore axis), and error
ellipsoids for full 3D uncertainties. Confidence intervals, error ellipses and error ellipsoids
are directly linked to the position co-variance matrix at a survey station. It is, however,
generally not any easy internal relationship between them, for example through the radius
of the ellipsoid etc. Each alternative has usually to be calculated directly out of the
position co-variance matrix. Intervals, ellipses and ellipsoids calculated out of a
co-variance matrix can be scaled up to any confidence level. Scaling factors will be
different for the three cases,

- The 95% confidence interval scaling factoris 1.96

- The 95% 2D uncertainty ellipse scaling factor is 2.49
- The 95% 3D uncertainty ellipsoid scaling factor is 2.80

Published Directional Surveying Error Propagation Theories

Three published directional surveying error propagation theories are currently available. It
is the Walstrom model, the Wolff deWardt model and the Instrument performance model.

The Walstrom model is a pure random model. It was rejected as unsatisfactory many years
ago, due to underestimation of uncertainties commonly seen in the field.

The Wolff deWardt model is a pure systematic model, which have been regarded as an
industry standard for many years. A number of limitations have been identified. Some of
them are critical enough to make the basic Wolff deWardt model unsuited for many
present survey instruments and methods. Among the most serious limitations are

Page 147 Line 2 paragraph 3 factor is 2,49 should be factor is 243

nb.no Opphavsrettsbeskyttet materiale



148

Improper weighting functions that can lead to wrong conclusions.

- Neglecting of random errors in cases where the systematic errors are cancelling out.
- No method given for adequate connection of independent survey sections.

- No given confidence level.

The Instrument performance model is a combined random, systematic and bias model. It
has already been available for some years, but has not been adopted as an industry
standard. It has a different depth error handling compared to the standard within the
directional surveying industry. This complicates position uncertainty analyses of inertial
surveys and redundant survey programs.

agnetic D Uncertainti

‘Wellbore position uncertainties in connection with magnetic surveys (MWD or EMS) are
usually caused by environmental effects, but sensor errors are also important in cases
where the mathematical azimuth solution has a singularity. Such singularities are found in
these two cases.

- At the magnetic poles. The inclination uncertainty is proportional to A
- For horizontal magnetic east / west wellbores when axial magnetic corrections are

applied. The azimuth uncertainty is proportional to ' ;
PP ¥ %5 popo l-{lm:(fnaﬁmﬁan}uinz{mag.a:im!h})

The most significant environmental error sources in connection with magnetic surveys are

- Variations in the magnetic declination caused by "atmospheric"- and local crust
effects. Similar variations in the magnetic dip and in the earth total field are also
important when axial corrections are applied.

- Magnetic interference caused by axial drill string magnetisation for measurements
without axial corrections. The cross axial component is usually without significance,

- Magnetic interference from existing casings when drilling close to them.

- Misalignments of the instrument within the collar, and misalignments of the collar
within the borehole (sag).

Gyro Compassing Uncertainties

Both environmental- and sensor effects have to be taken into consideration in connection
with north seeking gyro (gyro compassing) uncertainties. The following singularities
caused by sensor errors are found in the mathematical azimuth solution,

- An inclination singularity for horizontal wellbores for two accelerometer systems.

The inclination uncertainty is proportional to s (e for
canted systems). )
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- An azimuth singularity at the poles and for horizontal wellbores. The azimuth

uncertainty is proportional to ——— I{. e

The most significant gyro compassing errors are for rotor gyro instruments given by

- Accelerometer scale factor errors.

- Gyro scale factor errors.

- Spin axis mass unbalances. Some systems are also affected by input axis mass
unbalances.

- Misalignments of the instrument within the instrument collar, and misalignments of
the instrument collar within the borehole when run inside drill pipes.

- Uncertainties in input parameters such as local gravity and local latitude.

Continuous Gyro Uncertainties

Modemn continuous high accuracy gyros are not discrete systems like traditional
directional systems (magnetic- and gyro compassing instruments). They are designed for
continuously surveying of the entire wellbore profile. They do therefore not fit directly
into the survey station to station approach given by Wolff and deWardt. Current surveying
practice is, however, only to record measurements taken at given intervals (every 10 meter
or less in high curvatures). High accuracy gyros are therefore logically also discrete
systems, This fact can be used in the derivation of weighting functions for an improved
Wolff deWardt error propagation theory.

All available continuous gyro systems are affected by sensor dependent singularities.
Different systems can suffer from different singularities. Possible singularities are

- An inclination singularity for canted systems. The inclination uncertainty is
proportional to m

- An azimuth singularity for vertical wellbores. The azimuth uncertainty is
proportional to m{—l-— ingon; - Systems suffering from this singularity are used as

stationary gyro compassing instruments at smaller inclinations (usually up to 15°).
The most significant error sources for continuous rotor gyro instruments are

- Accelerometer bias and scale factor errors.

- Gyro bias and scale factor errors.

- Spin- and input axis mass unbalances.

- Misalignments of the instrument within the instrument collar, and misalignments of
the collar within the borehole when run inside drill pipes.

- Uncertainties in input parameters such as local gravity and local latitude.
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Depth Uncertaintics

Depth errors in connection with drill string- and wireline depth measurements suffer from
many error sources, where the following are among the most dominant

- Reference point errors.

- Telescopic and drill string / wireline suspension effects.

- Measuring tape / wheel emors.

- Stretch and temperature effects.

- Pressure and mud flow effects.

- Wireline effects like twisting, inelastic stretch, buckling etc.

Input parameters needed in the estimation of these depth error components are usually not
available during wellbore position uncertainty predictions. As a substitute for exact
estimates of these depth errors, it is possible to create four empirical depth uncertainty
components that together account for more than 80% off the total depth error. They are

- A random between stations reference error component.

- A systematic within surveys reference error component.

- A systematic within surveys scale error component (proportional to the measured
depth).

- A bias stretch / temperature error component (proportional to the product of the
measured depth and the vertical depth).

It is recommended that these four simplified depth weighting functions are used in
wellbore position uncertainty predictions instead of the complete set of detailed depth
weighting functions.

Inertial Navigation Systems Uncertainties

Modem inertial navigation systems (INS) are, like continuous gyro systems, designed for
continuous surveying of entire wellbore profiles. They can, because of an discrete
recording practice, logically be locked upon as discrete systems, This fact can be used to
create weighting functions that fit into the framework of an improved Wolff deWardt
theory.

There are currently two types of INS systems in use, wireline aided- and zero velocity
update systems. Wireline aided systems are affected by three major uncertainty dnvers,
uncertainties in the wireline depth measurements, uncertainties in the initial angular
reference determination and sensor dependent uncertainties. Zero velocity systems are
only affected by the latter two.

Inertial systems do not show any sensor dependent singularities.

Error sources such as misalignments have usually very lirtle significance on the wellbore
position estimate due to specially designed filtering techniques.
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Conclusions and Recommendations

Wellbore position surveying is affected by many different error sources. Both random
errors, biases and other types of systematic errors are usually present. Random errors have
more favourable error propagation characteristics (proportional with the square root of the
number of survey stations) than biases and systematic errors (proportional with the number
of survey stations), and are resulting in much smaller position uncertainties. It should
therefore be focused on removal or reduction of biases and systematic errors in connection
with accuracy improvement programs.

Biases result in skew uncertainties, which easily are misinterpreted. This problem can be
avoided by correction for biases with a priori estimates. This correction, which always is
recommended, transform a bias to a smaller systematic error, This leads to a reduction of
the total uncertainty.

The effect of different error sources on the wellbore position are a function of wellbore
geometry, geographical location etc. Many instrument types and surveying techniques do
in certain cases suffer from mathematical singularities. It is therefore important to have a
tool designed for planning of optimal survey programs with respect to required accuracy.
Three published tools are currently available. It is the Walstrom-, the Wolff deWardt-
(industry standard) and the Instrument performance error propagation models. There are
identified problems with all of them, and it is concluded that they should be substituted
with a new method. This new method should fulfil the following goals

- It should be an evolution of the Wolff deWardt theory (the industry standard) to
reduce possible confusion and resistance within the oil industry.

- It should be comprehensive enough to give a realistic picture of the position
uncertainty for all present and coming instruments and techniques such as
continuous high accuracy gyros and inertial navigation systems.

- Itshould be accompanied by standard procedures on how to add new instruments
and running procedures into this new method.

Such a error propagation theory is currently under development by the "Industry Steering
Commuttee on Wellbore Survey Accuracy" (ISCWSA). The work presented in this theses
is a major contribution to the steering committee work. A first version is currently under
implementation in a leading well planning software.

The new method has to be accompanied by realistic uncertainty figures / predictions for all
error sources which are identified as significant. It has to be distinguished between
different running procedures and levels of quality control. It is recommended that these
uncertainty figures are established in two steps. A first version data set based on current
knowledge (best guess) should be established as soon as possible. A second version based
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on laboratory measurements and redundant field data, should then be established when
enough gross error free field data are collected. ISWCA has started the compilation of the
first version of MWD figures. Depth uncertainty figures presented in this theses is a
contribution to this work.

To secure the validity of uncertainty figures, they should be accompanied by a set of
quality control procedures for each type of wellbore position surveying. The derivation of
such procedures is regarded as one of the most important task for the near future.

Accurate depth error estimation involves twenty seven different error equations. They are
dependent on varying parameters such as the mechanical properties of drill strings and
wirelines, thermal gradients, mud pressure, and flow rates. Exact values will usually not
be available during wellbore planning, It is shown that these equations can be replaced
with four empirical depth uncertainty equations in uncertainty studies. A few angular error
sources, such as sag and drill string magnetisation, are also dependent on drill string
properties unknown during wellbore planning. It should be investigated whether it also for
these error sources are possible to create simplified empirical uncertainty equations.

Modem extended reach and designer wellbores are often surveyed with independent
consecutive survey sections overlapping each other. The redundant information present in
these surveys are currently used only for gross error control. The redundant information
can, however, also be used to improve the final wellbore position estimate significantly. It
is therefore recommended that a statistical adjustment theory for redundant wellbore
positioning survey programs is developed as soon as possible.
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Name

Azimuth

Magnetic azimuth

Local magnetic field strength
"Measured depth"

Vertical depth

East

Young's modulus of wirelines
Young's modulus of steel

Local gravity

Angular momentum vector of a spinning mass
Inclination

Gyro mass unbalance

North

Stand pipe pressure

Mud flow rate

Continuous rotor gyro measurement
Formation temperature gradient
Rotor gyro compassing measurement
Measuring tape temperature
Vertical

Load

Pipe cross sectional area
Axial accelerations
Magnetic measurement
Uncertainty in ...
Ballooning factor
Gravity measurement
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Name

Pump on/off identification
Survey type indicator
Estimated constants

Pipe length

Misalignment angle
Magnetic pole strength
Sag misalignment angle
Time

Logging speed

Actual change in ...

Magnetic dip

Local latitude

Observation co-variance matrix
Design matrix

Annulus pressure loss

Position co-variance matrix
Earth angular rate

Temperature expansion constant
Cant angle

Magnetic declination

Relative deformation

Bias

Pressure loss factor

Friction factor

Poisson's ratio

Density

Standard deviation

High-side toolface

Azimuth toolface

Scale factor

Ring laser gyro measurement
Angular rotation vector perpendicular to H









