

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Three Considerations in Building an Accurate Crustal Magnetic Field Model

Xiong Li, Patrick Quist, Barry Wiggins Xcalibur Multiphysics

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Wellbore Positioning Technical Section

Longer and Closer Horizontal Wells Require More Accurate Positioning

"By drastically increasing the horizontal length of wells, producers have increased production despite using fewer rigs and drilling fewer wells."

http://www.eia.gov/todayinenergy/detail.cfm?id=44236

- Wells are drilled not only longer but also closer.
- Reducing the positional uncertainty becomes more important when a geological target gets smaller, a wellbore is longer, and multiple wells are spaced closer.
- The IFR technique that uses local magnetic data increases wellbore positioning accuracy.

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Geomagnetic Reference Field Model and IFR

Full wavelength (km) = 111 * 360 / SHD

- SHDs 16 and above are of the crustal magnetic field. SHD 133 is the resolution of satellite magnetic data. Shorter-wavelength information is determined by local airborne, ground, and shipborne magnetic surveys.
- Global geomagnetic reference field models contain very long wavelengths of the crustal field. IFR is designed to reduce the omission error on top of these global models.
- The local magnetic data grid must have a dimension of at least twice the spatial resolution of the reference field model.

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Derivation and Use of an IFR Model

Scalar crustal TMI anomaly on surface

Downward Continuation

Scalar to Vector Conversion

Vector magnetic field at depths

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

OWSG Error Model Global Values (1-sigma)

	MWD	MWD + IFR1
Declination (°)	0.36	0.15
BH-Dependent Declination (° x nT)	5000	1500
Magnetic Dip (°)	0.2	0.1
Total Magnetic Field (nT)	130	50

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Three Considerations

- Geological constraint in downward continuation
- Variable declinations and variable inclinations (dips) in conversion
- High-resolution aeromagnetic data

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Downward Continuation

- The magnetic field decays with the cubic of the distance.
- The magnetic field gets stronger when we drill deeper or closer to crustal magnetic sources (e.g., geological basement).

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Downward Continuation by the Fourier Transform Method

 $F(T_{down}) = exp(kz)F(T_{obs})$

- *k* is the wavenumber (frequency) and *z* is the continuation distance
- Downward continuation is unstable and amplifies shorter-wavelengths and noise extremely
- Different tricks can be used to stabilize the continuation
 - o A low-pass filter before or after the continuation
 - Application of damping to the operator

$$F(T_{down}) = \frac{exp(-kz)}{exp(-2kz) + \alpha k^n} F(T_{obs})$$

- Different continuation distances require different cutoffs of a filter or different damping values
 - Parameter choice is arbitrary and has no geophysical or geological meaning
 - Such a modification means changes to the observed magnetic data

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Examination of Downward Continuation

- This magnetic anomaly grid will be downward continued 4000 ft and 6000 ft, respectively.
- We check the continuation results along the profile.

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Downward Continuation by the Fourier Method

Different continuation distances require different cutoffs for a low-pass filter or different values for a damping factor.

Considerations in Building an Accurate IFR Model

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Downward Continuation by the Equivalent Source Method

- Results at all continuation depths are produced by the same equivalent sources placed at 14000 ft below the observation surface.
- These results are stable and make geological sense.

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Downward Continuation by the Equivalent Source Method

- Observed anomalies can be interpreted by fictitious (equivalent) sources because geophysical inversion is non-unique.
- The equivalent source technique works for an undulating observation surface and is stable.

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Sediments over Basement: The Permian Basin

https://wiki.seg.org/wiki/Permian_basin#/media/File:Tarka-Permian-Xsection.jpg

In a sedimentary basin

Sediments contain no significant magnetization

Basement has significant magnetization variations and produces dominant crustal magnetic anomalies

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Basement Depths in the Bakken

Equivalent sources can be placed on the top of the basement of the Williston Basin – A geological constraint

- Depths are subsea in feet
 - The coordinate system is NAD83 / North Dakota North (US ft)

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Scalar (T) to Vector (B_E , B_N , B_Z) Conversion

- The scalar TMI (total magnetic intensity) anomaly (T) is in the direction (inclination I and declination D) of the local geomagnetic field.
- The direction of the geomagnetic field varies from point to point (exactly speaking).
- This conversion is done for a surface, not a profile not a point.
- Routine algorithms for this conversion use a constant declination and a constant inclination.
- When the data area is large, variable declinations and variable inclinations need to be considered.

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Campos Basin: At 5000 m below MSL

Considerations in Building an Accurate IFR Model

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

East, North and Vertical Component Differences: At 5000 m below MSL

The images show the east, north and vertical component differences resulting from two conversions: (i) using a constant inclination and a constant declination and (ii) using variable inclinations and variable declinations.

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Declination and Inclination Differences: At 5000 m below MSL

The images show the declination and inclination differences resulting from two conversions: (i) using a constant inclination and a constant declination and (ii) using variable inclinations and variable declinations.

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

The 1-km NAmag

- The 1-km NAmag (North American magnetic anomaly grid) was released in 2005.
- Canada, the US, and Mexico compiled their country-wide magnetic anomaly grids first, and then merged.
- USmag and NAmag are the same within the USA.
- The grid spacing is 1 km but the actual spatial resolution varies and depends on individual surveys.

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

High-Resolution AeroMagnetic (HRAM) Survey

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Wellbore Positioning Technical Section

The Delaware Basin and Winkler County of Texas

and the image shows SRTM elevation.

NAD83 / Texas Central (US ft)

- The public-domain aeromagnetic survey used a flight line spacing of 3 miles (blue lines) while a highresolution aeromagnetic survey had a line spacing of 250 m (black lines).
- To build an IFR model, we have used 1000-m not 250-m lines.

•

21

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

HDGM and Crustal Declinations at 8000 ft below MSL: Profile 1

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

HDGM and Crustal Declinations at 8000 ft below MSL: Profile 2

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Conclusions

All three are important when building an accurate IFR model

- I. A stable downward continuation using geological constraint (basement depths) by a technique such as the equivalent sources.
- II. A conversion from the scalar TMI anomaly into the vector magnetic field considering variable declinations and variable inclinations.
- III. High-resolution magnetic data.

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Thank you

Questions (bets@xcaliburmp.com)