

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Fully Automated Collision Avoidance

Analysis and Wellbore Quality Monitoring in

Real-Time

By: Ali Karimi Jonathan Lightfoot

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Outline

Scope & Objectives

Workflow

Directional Metrics

Automated Offset Survey Loading

The Discreet Boundary Model

Ladder Plot

Summary, Future Work and Q&A

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Scope and Objectives

- Phase I (current capabilities)
 - Receiving and processing the surveys in near real-time
 - Comparing planned with actual trajectories
 - Apply directional drilling metric to evaluate the wellbore quality
 - Obtain all the offset well list and surveys from several data sources
 - Calculate center-center distance to offset wells
 - Generate ladder plots & conservative SF
 - Near real-time updates

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Real-Time Survey

- Real-time survey is streamed for all the active wells.
- Corrections might be needed for real-time surveys.
- When the real-time surveys are not available, planned surveys are used for the analysis.

WellId	MD	Inclination	Azimuth	TVD	DLS	North	East	VerticalSection
3001547957	0	0	0	0	0	0	0	0
3001547957	93.1	0.48	273.75	93.1	0.52	0.03	-0.39	0.39
3001547957	182.6	0.78	254.24	182.59	0.41	-0.12	-1.35	1.33
3001547957	272.7	0.67	234.26	272.69	0.3	-0.59	-2.37	2.27
3001547957	367.1	0.39	291.96	367.08	0.6	-0.79	-3.11	2.59
3001547957	461.9	0.3	265.66	461.88	0.19	-0.69	-3.66	3.7
3001547957	556.3	0.36	49.89	556.28	0.67	-0.52	-3.68	-3.15
3001547957	637	0.09	24.83	636.98	0.35	-0.3	-3.46	-1.73
3001547957	725	0.04	203.01	724.98	0.15	-0.26	-3.44	1.58
3001547957	815	0.07	280.86	814.98	0.08	-0.28	-3.51	3.39
3001547957	906	0.15	271.29	905.98	0.09	-0.27	-3.68	3.67
3001547957	998	0.26	233.4	997.98	0.18	-0.39	-3.97	3.42
3001547957	1090	0.31	271.17	1089.98	0.21	-0.51	-4.39	4.38
3001547957	1182	0.31	227.28	1181.98	0.25	-0.67	-4.82	4
3001547957	1274	0.27	244.42	1273.98	0.1	-0.94	-5.2	5.1
3001547957	1366	1.18	27.14	1365.97	1.53	-0.19	-4.96	-2.43

Sample real-time survey

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Plan vs. Actual

Plan vs. Actual (TVD vs HD)

Plan vs. Actual (TVD vs MD)

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Plan vs. Actual (Continued)

Plan vs. actual (top left: DLS, top middle: Inclination, top right: Azimuth, bottom left: Tortuosity, bottom middle: Build Rate, bottom right: Effective Turn Rate 7

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Plan vs. Actual (Continued)

Plan vs. Actual (Cum. DLS)

Plan vs. Actual (Cum. Tortuosity)

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Directional Metrics

UVC, ULC, TVC, TLC, Unwanted Curvature vs. MD

LTI and VTI vs. MD

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Offset Wells - Search Box

 Initial search is conducted based on the surface location of the reference well. Default search distance is set to 7 miles.

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Offset Surveys

- 3 data sources are used:
 - IHS central data base (roughly, half a million surveys available)
 - Company definitive surveys
 - Company planned surveys
 - Fake surveys are automatically generated for missing wells

\$ UWI		DIR_SRVY_ID	MEASURED_DEPTH	TV_DEPTH	<pre> DERIVED_IND </pre>	DEVIATION_N	DEVIATION_E	DEVIATION_ANGLE	DEVIATION_AZIMUTH
30025458720000	PI	1	0	0	(null)	0	0	0	0
30025458720000	PI	1	26.5	26.5	(null)	0	0	0	0
30025458720000	PI	1	104.4	104.399	(null)	0.28	0.14	0.39	183.27
30025458720000	PI	1	133.7	133.699	(null)	0.47	0.16	0.34	188.47
30025458720000	PI	1	162.6	162.598	(null)	0.64	0.2	0.37	202.27
30025458720000	PI	1	189.4	189.397	(null)	0.8	0.28	0.41	209.5
30025458720000	PI	1	214.4	214.397	(null)	0.95	0.37	0.4	212.17
30025458720000	PI	1	242.5	242.496	(null)	1.11	0.49	0.38	221.14
30025458720000	PI	1	271.5	271.496	(null)	1.24	0.62	0.37	230.01
30025458720000	PI	1	334.5	334.494	(null)	1.47	0.94	0.33	236.59
30025458720000	PI	1	43.4	43.4	(null)	0.02	0.03	0.24	240.32
30025458720000	PI	1	71.7	71.7	(null)	0.1	0.1	0.25	201.42
30025458720000	PI	1	303	302.995	(null)	1.36	0.78	0.36	233.56
30025458720000	PI	1	366	365.994	(null)	1.57	1.09	0.33	241.39
30025458720000	PI	1	397.5	397.493	(null)	1.64	1.25	0.33	248.36
30025458720000	PI	1	429	428.993	(null)	1.7	1.42	0.31	254.04
30025458720000	PI	1	460.5	460.492	(null)	1.75	1.59	0.32	251.92
30025458720000	PI	1	492	491.992	(null)	1.8	1.76	0.33	255.08
30025458720000	PI	1	523.5	523.491	(null)	1.85	1.95	0.4	256.68
30025458720000	PI	1	555	554.99	(null)	1.89	2.19	0.46	265.39
30025458720000	PI	1	586.6	586.589	(null)	1.91	2.44	0.48	265.11
30025458720000	PI	1	618.1	618.088	(null)	1.94	2.71	0.49	260.8
30025458720000	PI	1	649.6	649.587	(null)	1.99	3	0.58	260.49
30025458720000	PI	1	681.1	681.085	(null)	2.05	3.32	0.6	256.44
30025458720000	PI	1	712.6	712.583	(null)	2.14	3.63	0.59	252.99
30025458720000	PI	1	744.1	744.082	(null)	2.24	3.95	0.63	252.91
30025458720000	PI	1	775.6	775.58	(null)	2.34	4.28	0.62	251.77
30025458720000	PI	1	807.1	807.078	(null)	2.45	4.6	0.61	249.9
30025458720000	PI	1	838.6	838.576	(null)	2.56	4.93	0.65	253.69
30025458720000	PI	1	852.6	852.575	(null)	2.61	5.1	0.79	252.82

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Traditional Scan Methods

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Approach: The Discrete Boundary Model (DBM)

International Journal of Graphics Vol. 1, No. 1, November, 2010

Study of Distance Computation between Objects Represented by Discrete Boundary Model

M. S. Uddin^{a*}, K. Yamazaki^b ^{a,*} School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia ^b Department of Mechanical and Aerospace Engineering, University of California Davis, CA 95616, USA ^{a,*} <u>m.uddin@unsw.edu.au</u> (*corresponding author) <u>^bkyamazaki@ucdavis.edu</u>

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

DBM Implementation

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Calculating Distance Between Two UTM Points

- Approach 1: Cartesian Coordinates
- Approach 2: Haversine formula

Haversine $a = \sin^{2}(\Delta \phi/2) + \cos \phi_{1} \cdot \cos \phi_{2} \cdot \sin^{2}(\Delta \lambda/2)$ formula: $c = 2 \cdot \operatorname{atan2}(\sqrt{a}, \sqrt{(1-a)})$ $d = R \cdot c$

where φ is latitude, λ is longitude, R is earth's radius (mean radius = 6,371km); note that angles need to be in radians to pass to trig functions!

Distance comparison from (32, -103) to (32, 103) is 11089.2 m in in comparison with 11119.49 meters: <u>~0.3% error</u>.

utm.from_latlon(32.1, -103)

(688722.178086404, 3553270.7966073537, 13, 'S')

utm.from_latlon(32, -103) (688927.6380695379, 3542183.4911190174, 13, 'S')

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Ladder Plot

Note: Only distances smaller than 2000 ft. are displayed.

Ladder plot for all offset wells (center to center distance)

Ladder plot for the nearest offset well (center to center distance)

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Conservative Safety Factor (SF)

Ladder plot for all offset wells (conservative SF)

Ladder plot for the nearest offset well (conservative SF)

24000.00

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Summary and Future Work

Summary

- Real-time directional drilling metrics are calculated in real-time
- Offset surveys are loaded automatically
- The Discrete Boundary Model is deployed to compute the center-to-center distance
- User-friendly GUI

Future Work

- More realistic Separation Factor calculations
- Real-time alerts
- Offline version of the tool for well design
- Further validations

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Thank You

Fully Automated Collision Avoidance Analysis and Wellbore Quality Monitoring in Real-Time

Ali Karimi: ali_Karimi@oxy.com Jonathan Lightfoot: Jonathan_Lightfoot@oxy.com

