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The vertical well weighting functions corresponding to x and y accelerometer biases,
as used in the ISCWSA error models, are examined herein. It is found that the toolface-
dependent weighting terms as found in SPE 67616 are incorrect when applied to surveys taken
with random toolface angles. They do, however, work fine if the surveys have a constant
toolface orientation. The toolface-independent terms as found in Copsegrove memo CDR-
SM-03, Rev. 4, with the exception of the unintentional omission of a multiplier term, are
correct and can be used with either constant or random toolface angles. Care should be
taken, however, to make sure that the omitted multiplier has not been omitted from an error
model code.

Preliminaries

In the ISCWSA error models, the partial derivative describing the effect of an error source
on position is usually given by the chain rule:

∂∆rk
∂εi

=
∂∆rk
∂pk

∂pk
∂εi

(1)

where ∆rk is the change in wellbore position from survey station k − 1 to survey station k,
and pk is a vector of derived survey measurements at survey station k such that

pk =

 Dk

Ik
Ak

 (2)

Here, Dk is along hole measured depth, Ik is calculated inclination, and Ak is calculated true
azimuth.

A problem arises with the chain rule paradigm in vertical holes. In such cases, the partial
derivative ∂pk

∂εi
can become singular for some error sources. A prominent example is the partial

derivative of azimuth with respect to accelerometer x and y axis biases. However, when
Equation 1 is evaluated as a single entity, rather than as a chain, the singularity vanishes.
The purpose of this memo is to ascertain the proper form of these vertical orientation partial
derivatives.

Singular Weighting Function Substitutions for Toolface-

Dependent Error Models

For simplicity, and in keeping with [Williamson(2000)], the balanced tangential method will
be used for position propagation:

∆rk =
Dk −Dk−1

2

 sin Ik−1 cosAk−1 + sin Ik cosAk
sin Ik−1 sinAk−1 + sin Ik sinAk

cos Ik−1 + cos Ik

 (3)

-2-



Superior QC, LLC.

Clearly, we need the form of the sines and cosines of inclination and azimuth. Define the
gravitational acceleration in the sensor frame as

G =

 Gx

Gy

Gz

 (4)

where it is assumed that the z axis points downhole, and the x and y axes are such that the
coordinate system is right-handed. Then we can write

sin I =
Gz

‖G‖

cos I =

√
G2
x +G2

y

‖G‖
(5)

Likewise, the magnetic field vector due to the Earth in the same sensor frame is defined
as

B =

 Bx

By

Bz

 (6)

Calculating the sine and cosine of azimuth is a little trickier. First note that a unit vector
pointing East can be defined as

uE =
G×B
‖G×B‖

(7)

Further, a unit vector pointing in North can be defined as

uN =
uE ×G
‖G‖

=
(G×B)×G
‖G‖‖G×B‖

(8)

If we define a unit vector along the z axis in the sensor frame, uz =
[

0 0 1
]
, and we

note that the magnitude of the horizontal component of uz is

uzh = sin I (9)

then we can write the sine and cosine of azimuth as

sinA =
uTEuz
sin I

cosA =
uTNuz
sin I

(10)

We can put these equations in a more familiar form by first noting that, from the definition
of a vector cross product, we can write

‖G×B‖ = ‖G‖‖B‖ sin (90◦ −Θ)

= ‖G‖‖B‖ cos Θ (11)
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where Θ is the magnetic Dip angle. Using Equation 11, and carrying out the dot and cross
products, we can get

sinA =
(GxBy −GyBx)

‖G‖‖B‖ cos Θ sin I

cosA =
Bz(G

2
x +G2

y)−Gz(GxBx +GyBy)

‖G‖2‖B‖ cos Θ sin I
(12)

In order to assess the impact of accelerometer bias on position propagation in a vertical
well, let us assume that nominal inclination is zero. So sin I = 0 and cos I = 1 nominally.
Also, since azimuth is undefined in a vertical well, it is incorrect to continue to refer to the
sine and cosine of azimuth when I = 0. Rather, we have two calculated values that, when
multiplied by sin I, equal to zero since Gx = Gy = 0 and the sines cancel:

Fs =
(GxBy −GyBx)

‖G‖‖B‖ cos Θ sin I

Fc =
Bz(G

2
x +G2

y)−Gz(GxBx +GyBy)

‖G‖2‖B‖ cos Θ sin I
(13)

Now consider a small deviation in the x axis accelerometer reading, ∆Gx, such that Gx =
0 + ∆Gx. Let us determine the effect of this bias on ∆rk due to survey station k. First note
that the bias will cause a deviation in inclination:

sin (0 + ∆I) = sin ∆I

cos (0 + ∆I) = cos ∆I (14)

Next note that the calculated variables will also have a deviation due to the bias

Fs = ∆Fs

Fc = ∆Fc (15)

Putting this together in the definition of a derivative, and recalling that we are only exam-
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ining the effect at survey station k, we get

∂∆rk
∂∆Gx

= lim
∆Gx→0

∆rk(∆Gx)−∆rk(0)

∆Gx

= lim
∆Gx→0

Dk −Dk−1

2∆Gx

 sin ∆Ik∆Fck − 0
sin ∆Ik∆Fsk − 0

cos ∆Ik − 1



= lim
∆Gx→0

Dk −Dk−1

2∆Gx



sin ∆I(Bz(∆G2
x+0)−Gz(∆GxBx+0))

‖G‖2‖B‖ cos Θ sin ∆I

sin ∆I(∆GxBy−0)

‖G‖‖B‖ cos Θ sin ∆I

Gz√
G2

z+∆G2
x

− 1



=
Dk −Dk−1

2


−Bx

‖G‖‖B‖ cos Θ

By

‖G‖‖B‖ cos Θ

0



=
Dk −Dk−1

2


− sinαm

‖G‖

cosαm

‖G‖

0


(16)

where alpham is the magnetic toolface angle the subscript k has been dropped for brevity.
To clarify, when vertical

Bx = ‖B‖ cos Θ sinαm

By = ‖B‖ cos Θ cosαm

(17)
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A similar analysis for y axis accelerometer bias yields

∂∆rk
∂∆Gy

= lim
∆Gy→0

∆rk(∆Gy)−∆rk(0)

∆Gy

= lim
∆Gy→0

Dk −Dk−1

2∆Gy

 sin ∆Ik∆Fck − 0
sin ∆Ik∆Fsk − 0

cos ∆Ik − 1



= lim
∆Gy→0

Dk −Dk−1

2∆Gy



sin ∆I(Bz(0+∆G2
y)−Gz(0+∆GyBy))

‖G‖2‖B‖ cos Θ sin ∆I

sin ∆I(0−∆GyBx)

‖G‖‖B‖ cos Θ sin ∆I

Gz√
G2

z+∆G2
y

− 1



=
Dk −Dk−1

2


−By

‖G‖‖B‖ cos Θ

−Bx

‖G‖‖B‖ cos Θ

0



=
Dk −Dk−1

2


− cosαm

‖G‖

− sinαm

‖G‖

0


(18)

To summarize, when in a vertical hole, the chain rule calculation used to determine the
effect of x and y accelerometer biases should be replaced by

∂∆rk
∂ABX

=
Dk −Dk−1

2


− sinαm

‖G‖

cosαm

‖G‖

0

 (19)

and

∂∆rk
∂ABY

=
Dk −Dk−1

2


− cosαm

‖G‖

− sinαm

‖G‖

0

 (20)
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Comparison with the Williamson Paper Formulation

SPE 67616 has formulations for accelerometer x and y bias weighting functions in vertical
holes. If one assumes that the computer code in use will calculate A = 0 and α = 0
when I = 0 (α is high-side toolface), then simulation shows that the position uncertainty
resulting from the formulation is identical to that resulting from Equations 19 and 20 for
sliding operations. However, the SPE 67616 formulation significantly overstates the position
uncertainty for rotating operations. This can be see in Figure 1, where the green ellipse
of uncertainty (EOU), calculated with Equations 19 and 20, is shown to match the blue
ellipse calculated from the covariance of the monte carlo samples. However, the red ellipse,
calculated from the formulation presented in SPE 67616, is shown to be significantly in error.

Figure 1: Comparison of Horizontal Position Uncertainty Predictions in a Vertical Well
Under Rotating Conditions After 300 Meters. Plots are Identical Except the Left Plot
Shows the Samples Drawn from a 50,000 Run Monte Carlo Analysis.

Singular Weighting Function Substitutions for Toolface-

Independent Error Models

This section addresses the toolface-invariant fictive error sources introduced in [Torkildsen and Bang(2000)].
Table 1 in [Williamson(2000)] indicates that the partial derivatives, ∂pk

∂εi
, for the x and y

accelerometer bias terms are first order in cos τk and sin τk. Thus, they only have non-zero
weighting terms for fictive error sources 4 and 5 in Appendix E of [Torkildsen and Bang(2000)].
Note that the test [Torkildsen and Bang(2000)] actually gives the weighting functions as
∂∆rk
∂εi

, where εi is a fictive error source. Thus, in order to stick with the definition of the
fictive error sources, we will analyze the full derivative analytic expression directly.
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Accelerometer x Axis Bias, Term 4

The 4th fictive error source term corresponding to x accelerometer bias has a weighting
function, for a stationary survey k, given by√

1

2
dXk

=

√
1

2

∂∆rk
∂pk

∂pk
∂εi

=
Dk −Dk−1

2
√

2

 1
∆Dk

∂∆rk
∂Dk

cos I cosA
cos I sinA
− sin I

− sin I sinA
sin I cosA

0

 0
uIk
uAk


=

∆Dk

‖G‖2
√

2

 1
∆Dk

∂∆rk
∂Dk

cos I cosA
cos I sinA
− sin I

− sin I sinA
sin I cosA

0

 0
− cos I

Fs cos I tan Θ


=

∆Dk

‖G‖2
√

2

 −Fc cos2(I)− F 2
s sin I cos I tan Θ

−Fs cos2(I) + FsFc sin I cos I tan Θ
sin I cos I


(21)

When I → 0 with Gy = 0 and ∆Gx → 0+, we can find the derivative of this fictive error
source with respect to x axis accelerometer bias as the limit

√
1

2
dXk

= lim
∆Gx→0+

∆Dk cos ∆I

‖G‖2
√

2


− cos ∆I(Bz(∆G2

x+0)−Gz(∆GxBx+0))
‖G‖2‖B‖ cos Θ sin ∆I

− (∆GxBy−0)2

‖G‖2‖B‖2 cos2 Θ sin ∆I
tan Θ

− cos ∆I(∆GxBy−0)

‖G‖‖B‖ cos Θ sin ∆I
+ (∆GxBy−0)(Bz(∆G2

x+0)−Gz(∆GxBx+0))

‖G‖3‖B‖2 cos2 Θ sin ∆I
tan Θ

sin ∆I



= lim
∆Gx→0+

∆Dk cos ∆I

‖G‖2
√

2


− cos ∆I(Bz∆G2

x−Gz∆GxBx)
‖G‖‖B‖ cos Θ|∆Gx| − (∆GxBy)2

‖G‖‖B‖2 cos2 Θ|∆Gx| tan Θ

− cos ∆I∆GxBy

‖B‖ cos Θ|∆Gx| + ∆G3
xByBz−Gz∆G2

xBxBy)

‖G‖2‖B‖2 cos2 Θ|∆Gx| tan Θ

sin ∆I



=
∆Dk

2
√

2


sinαm

‖G‖

− cosαm

‖G‖

0

 (22)

So we have arrived at an answer using the limit as ∆Gx → 0+. However, if we had used
the limit as ∆Gx → 0− the sign of Equation 22 would be positive instead of negative. This
means that there is no continuity in the limit, and therefore the limit does not exist. The
weighting function for the 4th fictive error term does not exist on its own. However, the limit
of the square of the fictive error weighting term does exist, and that is what is used for error
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propagation:

1

2
d2
Xk

=
∆Dk

8


sin2 αm

‖G‖2

cos2 αm

‖G‖2

0

 (23)

Accelerometer y Axis Bias, Term 4

Let us now look at the effect due to the y axis accelerometer bias. The analog of Equation
21 for the y axis bias is given by√

1

2
dXk

=
Dk −Dk−1

2
√

2

 1
∆Dk

∂∆rk
∂Dk

cos I cosA
cos I sinA
− sin I

− sin I sinA
sin I cosA

0

 0
uIk
uAk


=

∆Dk

‖G‖2
√

2

 1
∆Dk

∂∆rk
∂Dk

cos I cosA
cos I sinA
− sin I

− sin I sinA
sin I cosA

0

 0
0

Fc tan Θ− cot I


=

∆Dk

‖G‖2
√

2

 −FsFc sin I tan Θ + Fs cos I
F 2
c sin I tan Θ− Fc cos I

0


(24)

When I → 0 with Gx = 0 and ∆Gy → 0+, we can find the derivative of this fictive error
source with respect to y axis accelerometer bias as the limit

√
1

2
dXk

= lim
∆Gy→0+

∆Dk

‖G‖2
√

2


− (Bz(0+∆G2

y)−Gz(0+∆GyBy))(0−∆GyBx)

‖G‖3‖B‖2 cos2 Θ sin ∆I
tan Θ + (0−∆GyBx)

‖G‖‖B‖ cos Θ sin ∆I
cos ∆I

(Bz(0+∆G2
y)−Gz(0+∆GyBy))2

‖G‖4‖B‖2 cos2 Θ sin ∆I
tan Θ− (Bz(0+∆G2

y)−Gz(0+∆GyBy))

‖G‖2‖B‖ cos Θ sin ∆I
cos ∆I

0



= lim
∆Gy→0+

∆Dk

‖G‖2
√

2


(Bz∆G2

y−Gz∆GyBy)∆GyBx

‖G‖2‖B‖2 cos2 Θ|∆Gy | tan Θ− ∆GyBx

‖B‖ cos Θ|∆Gy | cos ∆I

(Bz∆G2
y−Gz∆GyBy)2

‖G‖3‖B‖2 cos2 Θ|∆Gy | tan Θ− (Bz∆G2
y−Gz∆GyBy)

‖G‖‖B‖ cos Θ|∆Gy | cos ∆I

0



=
∆Dk

2
√

2


− sinαm

‖G‖

cosαm

‖G‖

0

 (25)
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Note here that Equation 25 is not identical to Equation 22. However, analogously to Equation
22, it’s limit does not exist, but the limit of its square does exist:

1

2
d2
Xk

=
∆Dk

8


sin2 αm

‖G‖2

cos2 αm

‖G‖2

0

 (26)

Accelerometer x Axis Bias, Term 5

The 5th fictive error source term corresponding to x accelerometer bias has a weighting
function, for a stationary survey k, given by√

1

2
eXk

=

√
1

2

∂∆rk
∂pk

∂pk
∂εi

=
Dk −Dk−1

2
√

2

 1
∆Dk

∂∆rk
∂Dk

cos I cosA
cos I sinA
− sin I

− sin I sinA
sin I cosA

0

 0
vIk
vAk


=

∆Dk

‖G‖2
√

2

 1
∆Dk

∂∆rk
∂Dk

cos I cosA
cos I sinA
− sin I

− sin I sinA
sin I cosA

0

 0
0

−Fc tan Θ + cot I


=

∆Dk

‖G‖2
√

2

 FsFc sin I tan Θ− Fs cos I
−F 2

c sin I tan Θ + Fc cos I
0


(27)

When I → 0 with Gy = 0 and ∆Gx → 0+, we can find the derivative of this fictive error
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source with respect to x axis accelerometer bias as the limit

√
1

2
eXk

= lim
∆Gx→0+

∆Dk

‖G‖2
√

2


(∆GxBy−0)(Bz(∆G2

x+0)−Gz(∆GxBx+0))

‖G‖3‖B‖2 cos2 Θ sin ∆I
tan Θ− cos ∆I(∆GxBy−0)

‖G‖‖B‖ cos Θ sin ∆I

− (Bz(∆G2
x+0)−Gz(∆GxBx+0))2

‖G‖4‖B‖2 cos2 Θ sin ∆I
tan Θ + cos ∆I(Bz(∆G2

x+0)−Gz(∆GxBx+0))
‖G‖2‖B‖ cos Θ sin ∆I

0



= lim
∆Gx→0+

∆Dk

‖G‖2
√

2


∆GxBy(Bz∆G2

x−Gz∆GxBx)

‖G‖2‖B‖2 cos2 Θ|∆Gx| tan Θ− cos ∆I∆GxBy

‖B‖ cos Θ|∆Gx|

− (Bz∆G2
x−Gz∆GxBx)2

‖G‖3‖B‖2 cos2 Θ|∆Gx| tan Θ + cos ∆I(Bz∆G2
x−Gz∆GxBx)

‖G‖‖B‖ cos Θ|∆Gx|

0



=
∆Dk

2
√

2


− cosαm

‖G‖

− sinαm

‖G‖

0

 (28)

So we have arrived at an answer using the limit as ∆Gx → 0+. However, if we had used
the limit as ∆Gx → 0− the sign of Equation 22 would be positive instead of negative. This
means that there is no continuity in the limit, and therefore the limit does not exist. The
weighting function for the 4th fictive error term does not exist on its own. However, the limit
of the square of the fictive error weighting term does exist, and that is what is used for error
propagation:

1

2
e2
Xk

=
∆Dk

8


cos2 αm

‖G‖2

sin2 αm

‖G‖2

0

 (29)
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Accelerometer y Axis Bias, Term 5

These fictive error sources corresponding to y accelerometer bias have weighting functions,
for a stationary survey k, given by√

1

2
eXk

=

√
1

2

∂∆rk
∂pk

∂pk
∂εi

=
Dk −Dk−1

2
√

2

 1
∆Dk

∂∆rk
∂Dk

cos I cosA
cos I sinA
− sin I

− sin I sinA
sin I cosA

0

 0
vIk
vAk


=

∆Dk

‖G‖2
√

2

 1
∆Dk

∂∆rk
∂Dk

cos I cosA
cos I sinA
− sin I

− sin I sinA
sin I cosA

0

 0
− cos I

Fs cos I tan Θ


=

∆Dk

‖G‖2
√

2

 −Fc cos2(I)− F 2
s sin I cos I tan Θ

−Fs cos2(I) + FsFc sin I cos I tan Θ
sin I cos I


(30)

When I → 0 with Gx = 0 and ∆Gy → 0+, we can find the derivative of this fictive error
source with respect to y axis accelerometer bias as the limit

√
1

2
eXk

= lim
∆Gx→0+

∆Dk cos ∆I

‖G‖2
√

2


− cos ∆I(Bz(0+∆G2

y)−Gz(0+∆GyBy))

‖G‖2‖B‖ cos Θ sin ∆I
− (0−∆GyBx)2

‖G‖2‖B‖2 cos2 Θ sin ∆I
tan Θ

− cos ∆I(0−∆GyBx)

‖G‖‖B‖ cos Θ sin ∆I
+

(Bz(0+∆G2
y)−Gz(0+∆GyBy))(0−∆GyBx)

‖G‖3‖B‖2 cos2 Θ sin ∆I
tan Θ

sin ∆I



= lim
∆Gx→0+

∆Dk cos ∆I

‖G‖2
√

2


− cos ∆I(Bz∆G2

y−Gz∆GyBy)

‖G‖‖B‖ cos Θ|∆Gy | − (∆GyBx)2

‖G‖‖B‖2 cos2 Θ|∆Gy | tan Θ

cos ∆I∆GyBx

‖B‖ cos Θ|∆Gy | −
(Bz∆G2

y−Gz∆GyBy)∆GyBx

‖G‖2‖B‖2 cos2 Θ|∆Gy | tan Θ

sin ∆I



=
∆Dk

2
√

2


cosαm

‖G‖

sinαm

‖G‖

0

 (31)

Note here that Equation 31 is not identical to Equation 28. However, analogously to Equation
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28, it’s limit does not exist, but the limit of its square does exist:

1

2
e2
Xk

=
∆Dk

8


cos2 αm

‖G‖2

sin2 αm

‖G‖2

0

 (32)

Accumulating of Position Uncertainty Due to Accelerometer x/y
Axis Bias Terms 4 and 5

Recall that weighting functions of the fictive error terms are defined, for example, such that√
1

2
dXj

=

√
1

2

∂∆rj
∂pj

∂pj
∂εi

(33)

Thus, if we wanted to determine the position uncertainty at survey station k due to one such
systematic error source, we would use

E
[
∆r̃k∆r̃

T
k

]
= E

[
k∑
j=2

(
∂∆rj
∂pj

∂pj
∂εi

+
∂∆rj
∂pj−1

∂pj−1

∂εi

)
ε2i

k∑
m=2

(
∂∆rm
∂pm

∂pm
∂εi

+
∂∆rm
∂pm−1

∂pm−1

∂εi

)T]
(34)

Using the notation √
1

2
dXj,j−1

=

√
1

2

∂∆rj
∂pj−1

∂pj−1

∂εi√
1

2
dXj,j

=

√
1

2

∂∆rj
∂pj

∂pj
∂εi

(35)

Equation 34 can be rewritten

E
[
∆r̃k∆r̃

T
k

]
=

σ2
i

2

k∑
j=2

k∑
m=2

{
dXj,j

dXm,mρ(τj, τm) + dXj,j
dXm,m−1ρ(τj, τm−1)

+dXj,j−1
dXm,mρ(τj−1, τm) + dXj,j−1

dXm,m−1ρ(τj−1, τm−1)
}

(36)

where it has been assumed that the variance of each bias term individually is σ2
i . Because

all of the dX values for a single fictive error source have the same dependence on the sign
of that error source in terms of their limit as I → 0, this dependence will cancel out in the
covariance calculation, meaning the limit will exist. Furthermore, for fictive error term 4,
for any two survey stations terms of the form dXj,j

dXm,mρ(τj, τm) will only be non-zero if the
correlation term, ρ(τj, τm), is equal to 1, meaning τj = τm. Thus, the only non-zero terms in
Equation 36 will be of the form

1

2
dXj,j

dTXm,m
=

∆Dj∆Dm

8‖G‖2

 sinαmj
sinαmj

− sinαmj
cosαmj

0
− cosαmj

sinαmj
cosαmj

cosαmj
0

0 0 0

 (37)

-13-



Superior QC, LLC.

This holds for both the contributions from the x and y accelerometer biases. Therefore, it
is valid to combine the effects of fictive error term 4 from the x and y biases to get the
combined accelerometer bias contribution from fictive error term 4:

E
[
∆r̃k∆r̃

T
k

]
= σ2

i

k∑
j=2

k∑
m=2

{
dXj,j

dXm,mρ(τj, τm) + dXj,j
dXm,m−1ρ(τj, τm−1)

+dXj,j−1
dXm,mρ(τj−1, τm) + dXj,j−1

dXm,m−1ρ(τj−1, τm−1)
}

(38)

This term is referred to in the ISCWSA error model paradigm as ABXY-TI1.
Similarly for Term 5, the analog of Equation 37 for any two survey stations is

1

2
eXj,j

eTXm,m
=

∆Dj∆Dm

8‖G‖2

 cosαmj
cosαmj

cosαmj
sinαmj

0
sinαmj

cosαmj
sinαmj

sinαmj
0

0 0 0

 (39)

which holds for both the x and y bias fictive error terms. Thus, it is valid to combine the
effects of fictive error term 5 from the x and y biases to get the combined accelerometer bias
contribution from fictive error term 5:

E
[
∆r̃k∆r̃

T
k

]
= σ2

i

k∑
j=2

k∑
m=2

{
eXj,j

eXm,mρ(τj, τm) + eXj,j
eXm,m−1ρ(τj, τm−1)

+eXj,j−1
eXm,mρ(τj−1, τm) + eXj,j−1

eXm,m−1ρ(τj−1, τm−1)
}

(40)

where it has been assumed that the variance of each bias term individually is σ2
i . This term

is referred to in the ISCWSA error model paradigm as ABXY-TI2.
Analysis of Equations 37 and 39 shows that, for each entry in Equations 38 and 40 the

off-diagonal terms will drop out, and the addition of the on-diagonal terms will result in an
identity matrix. This is equivalent to using the vertical well weighting functions:

ABXY-TI1 weighting function =
∆D

2


1
‖G‖

0

0

 (41)

and

ABXY-TI2 weighting function =
∆D

2


0

1
‖G‖

0

 (42)

Note that the term weighting function here refers to the partials of the error source with
respect to the position vector. These weighting functions are appealing for use in toolface-
independent error models because they have no toolface dependence of any kind and contain
no terms that are not defined, such as azimuth.
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Comparison with Copsegrove Memo Formulation

The Copsegrove memo CDR-SM-03, Rev. 4 uses a different formulation of the accelerometer
x and y bias functions in a vertical hole. The ABXY-TI1 term is handled in the standard,
non-singular fashion. The net result is

∂∆rk
∂pk

∂pk
∂εi

=
Dk −Dk−1

2

 1
∆Dk

∂∆rk
∂Dk

cos I cosA
cos I sinA
− sin I

− sin I sinA
sin I cosA

0

 0
− cos I
‖G‖

tan Θ cos I sinA
‖G‖


(43)

If we assume that when I = 0, the computer code calculates A = 0 and α = 0, then this
weighting function reduces to

∂∆rk
∂pk

∂pk
∂εi

=
∆Dk

2

 − 1
‖G‖
0
0

 (44)

which, except for the sign, is equivalent to Equation 41.
The vertical well weighting function for the ABXY-TI2 term is given as

∂∆rk
∂pk

∂pk
∂εi

=

 − sinA
‖G‖

cosA
‖G‖
0

 (45)

Under the same conditions as above, for I = 0 this reduces to

∂∆rk
∂pk

∂pk
∂εi

=

 0
1
‖G‖
0

 (46)

which, except for multiplier ∆Dk

2
, is equivalent to Equation 42. Clearly the ∆Dk

2
multiplier

should be included (simulation confirms this), and this was likely the intention of the
memo. Still, care must be taken to implement the ABXY-TI2 weighting function correctly,
given the incomplete presentation in CDR-SM-03, Rev. 4. Leaving the multiplier off can
effectively remove all contribution of accelerometer bias to position uncertainty in the East
direction during the vertical portion of a well, distorting the error ellipse. Otherwise, the
two formulations agree perfectly, as can be seen in Figure 2 for the rotating case.
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Figure 2: Comparison of Horizontal Position Uncertainty Predictions in a Vertical Well
Under Rotating Conditions After 300 Meters. Plots are Identical Except the Left Plot
Shows the Samples Drawn from a 50,000 Run Monte Carlo Analysis.
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