

3–5 March 2020 Galveston Island Convention Center, Galveston, Texas

SPE-199585-MS

Gyro Wellbore Placement Using Advanced Solid-state Sensor Technology

Adrián Ledroz, John Weston, Gyrodata Inc. James Moisan, Apache Corp.

Jache

Contents

- Magnetometers and gyroscopes for wellbore placement
- New solid-state gyroscope technology
- Gyroscopic tool development
- Case study
- Concluding remarks

Magnetic sensors

- Very rugged sensors
- Very stable sensors
- Minimally affected by movement
- Unstable reference
 - Not stable over time
 - Local anomalies (horizontal and vertical)
 - Affected by Magnetic Storms
- Affected by magnetic interference from
 - BHA
 - Nearby wells
 - Downhole ore deposits
 - Magnetized mud

Gyroscopic sensors

- Rugged sensors
- Stable sensors
- Greatly affected by movement
- Stable reference

• Not affected by magnetic material

Vibratory gyroscopes

- Technology incorporates vibrating element with piezo-electric driver circuits
- In the presence of device rotation, a Coriolis force is generated which modifies the motion of the vibrating element
- Coriolis motion detected using piezoelectric or capacitive pick-offs to provide measure of applied turn rate
- The vibrating element of such sensors can take various forms such as a string, a hollow cylinder, a rod, a tuning fork, a beam or a hemispherical dome
- Such devices are generally classified under the heading of Coriolis vibratory gyros (CVGs)
- High performance sensors with bias stability of hundredth's of a deg/hr wellbore survey application

Solid-state gyroscope – development

- Initial laboratory tests and calibration 2012
- Initial deployment memory tool for post-drilling survey
 - surveyed >1.5 million feet of wellbore trajectory to date
- Initial deployment of GWD tool 2018
 - 'ghost mode' run in BHA with dedicated battery and shock monitoring system
 - validated against the definitive survey
 - run in multiple wells in > 50,000 feet of wellbore
 - includes harsh drilling environment in the Bakken basin
- 2nd generation GWD tool
 - 15 runs in North American land drilling sites
 - 50,000 feet horizontal drilling

Ghost run - example

Case Study

- Requirements
 - Accurate placement of well in Midland basin
 - Close proximity to another well
 - Lease-line constraints
 - Redundant information to reduce risk of NPT event
- Run MWD with IFR and MSA alongside Gyro while drilling tool
- 3 phases of drilling
 - Low inclination section
 - Build section
 - Lateral section

3–5 March 2020 Galveston Island Convention Center, Galveston, Texas

Case Study

Top hole section – Inclination and Azimuth

3–5 March 2020 Galveston Island Convention Center, Galveston, Texas

Case Study

Build section – Inclination and Azimuth

Case Study

Lateral section – Azimuth

Average difference between Gyro and MWD azimuth = 0.07 deg

Standard deviation = 0.5 deg

3–5 March 2020 Galveston Island Convention Center, Galveston, Texas

Case Study

Lateral section QC parameters

Additional Case Study – vertical well

No MWD present on the BHA

- It eliminates the need for Non-mag collars
- It eliminates the need of de-gaussing the BHA
- Azimuth, TF and QC are not affected by nearby casings/wells

Concluding remarks

- Survival in severe drilling environment demonstrated
- Good agreement between gyroscopic and magnetic measurement in all sections of the well
- Capability to detect noisy data and systematic changes related to the tool calibration demonstrated
- First time that a gyro while drilling tool has been utilized in every section of the well from surface to total depth
- Case study I involved:
 - More than 270 circulating hours
 - More than 400 hours below the rotary table
 - 20,000 ft of drilled wellbore
- Real-time gross error detection through comparison of MWD and gyro while drilling for all sections of the well is now a reality
- A reliable real-time alternative to MWD is available