Continuous 6-Axis Drilling Mode Surveys Case Studies

Wellbore Survey Accuracy Wellbore Positioning Technical Section

Mahmoud ElGizawy

50th General Meeting October 3rd, 2019 Calgary, Canada

Speaker Bio

Mahmoud ElGizawy

- E.H. Wellbore Positioning Manager, Schlumberger k+m
- PhD & MSc in Geomatics Engineering, U.of Calgary
- 20 years in positioning and navigation (15 years in wellbore positioning)
- Based in Abu Dhabi, UAE

- Motivation
- MWD Evolution
- Drilling Mode Surveys
- Case Studies
- Industry Steering Committee on
- Summary Oore Survey Accuracy
 Wellbore Positioning Technical Section

Motivation

Wellbore Trajectory at stationary surveys every 100 ft (30m)

Industry Steering Committee on

Traditional MWD survey action	Time
Working the drill string	2-4 mins
Pulling off bottom	1 min 👘 👘
Cycling the pumps	2 mins
Waiting on MWD to take a survey	2 mins
Waiting on telemetry	2-4 mins

50th General Meeting October 3rd, 2019 Calgary, Canada ILT - Rig time

NPT - Reduce differential stuck risk and Lost in Hole BHA

Measurement While Drilling Evolution

- MWD Measurement
- 6 axis (3 accelerometers and 3 magnetometers)
- Robust reliable and auditable
- Survey taken when stationary
- Time penalty Statements

- Continuous 6-axis surveying
- Definitive survey taken while drilling
- No "survey time"
- Reduced pump cycles
- Improved directional control

	1979		2010	
	1979		2019	
	•	•	•	
		2001		
		Continuous single-axis surveying		
		Improved trajectory control		
neral Meeting r 3rd, 2019 v. Canada		Not definitive without static survey		
		Schlumberger-Private		

Continuous 6-Axis Surveys - DMS

Challenges

- Phase compensation
- Shock and vibration
- Eddy Currents

Accelerometer Raw Data - Including S&V

SPE#194057MS

MD 3656 ft

38 Stationary surveys335 DMSOver 3 hours of rig time savings

Schlumberger-Private

50th General Meeting October 3rd, 2019 Calgary, Canada

Case 1 cont.

TVD difference is 2.67 ft

Difference in lateral displacement is 12.49 ft

MD 2141 ft

24 Stationary surveys 328 DMS

2 hours of rig time savings

Case 2 cont.

TVD difference is 2.89 ft

Difference in lateral displacement is 3.87 ft

MD 2328 ft

26 Stationary surveys201 DMS2 hours of rig time savings

50th General Meeting October 3rd, 2019 Calgary, Canada

Schlumberger-Private

Case 3 cont.

TVD difference is 0.73 ft

Difference in lateral displacement is 13.18 ft

Summary

DMS are taken while drilling, drill pipe moving/rotation

DMS are definitive surveys with MWD-STD accuracy and better

Industry Steering Committee on

Full EOU enclosure with MWD-STD error model

DMS surveys are anticipated to have tighter EOU with ISCWSA rev5 for sections with high DLS

\$

\$

More frequent surveys better define the wellbore trajectory

ILT - Rig Time Savings

NPT - Minimize differential stuck risk and reduce LIH/ST cost

Thank You

Industry Steering Committee on Wellbore Survey Accur Q&A Wellbore Positioning Technical Section

50th General Meeting October 3rd, 2019 Calgary, Canada

Schlumberger-Private