- Deriving Wellbore Quality Metrics from Trajectory Calculations
- Angus Jamieson

Angus Jamieson

- Introduction
 - H&P Technologies UK (AJC team)
 - 40 years DD and Marine Ops
 - Heriot Watt Civil Engineering Bsc 1979 FRICS
 - Based Inverness, UK
 - Specialized in
 - Navigation and Positioning
 - Directional Drilling

TORTUOSITY Questions

- Does your lateral look like this?
- Does it Matter?
- What about the Surface and Intermediate?
- Why is it important to achieve exceptional steering control?
- Is the best smooth wellbore one that is not steered?
- Should we steer 100% of the lateral or should we focus steering only when needed.

UNDULATING TORTUOSITY

- What is meant by undulations in a Lateral?
- How can you measure it?
- Does it affect production?
- Does it impact drilling?
- Does it affect the cement job and zonal isolation?
- Does this affect the quality of Stimulation
- How about Production? \$\$\$

Vertical Undulation Latera Image: Constraint of the second sec

UNDULATING TORTUOSITY

Zonal Isolation?

Image Extracted from: http://www.engineerlive.com/content/22351

http://www.engineerlive.com/sites/engineerlive/files/sty les/article/public/Pic2_HR_0.jpg?itok=FJx4KISd, Public Domain er 3rd, 2019

Vertical Undulation

Lateral Undulation⁵

12 Reasons Why Tortuosity is Important?

- It increases torque and drag while drilling
- It reduces buckling resistance in drill pipe
- It increases drillstring fatigue when rotating
- It impedes hole cleaning while drilling
- It increases drag when running casing
- It compromises cement job quality
- It causes variations in cross section due to cuttings traps and so..
- It can effect production rate
- It can reduce production quality
- It compromises survey accuracy with the consequence that
- It makes geo-steering more uncertain
- It compromises geological modelling accuracy

Ways to measure tortuosity

DLS against MD

- Easy to calculate
- Uses survey data
- Easy to Understand
- The less you survey the better you look
- May miss key points
- No simple comparison

Ways to measure tortuosity

Differentiate the DLS curve dDLS/dmd

- Measures consistency
- Does not penalise planned .0004°/ft²
 Curvature .0003°/ft²
- Only uses pulsed surveys
- May miss key points
- No simple comparison
- Hard to explain

Ways to measure tortuosity

Double Integrate the Differentiation

- Measures consistency
- Does not penalise planned Curvature
- Easy to Calculate in XL
- Easily defined as 'Unwanted Curvature'
- Only uses pulsed surveys
- May miss key points

Traditional Tortuosity Index

A more revealing approach

- A BHA designed to give a constant DLS may produce good consistency when 3D arcs are assessed for curvature.
- But what if one survey interval was a drop followed by a build?
- This would assess as consistent DLS from one survey to another
- SO
- Assess a Tortuosity index for build consistency and turn consistency separately then combine to a 3D Index

Introducing Effective Turn

- ET = Curve required to change Azimuth
- Easy at low inclinations
- Harder at higher inclinations

Toolface and Dogleg Calculations

Toolface =
$$\tan^{-1} \left(\frac{\text{Effective Turn}}{\text{Build}} \right)$$

Dogleg = $\sqrt{\left(\text{ET}^2 + \text{Build}^2 \right)}$

Toolface by Graphics

• Example

Current Attitude Inclination 25 Azimuth 100

Desired Attitude Inclination 35 Azimuth 124

i.e. Build 10 and Turn 24

Effective Turn = $24 \sin(30) = 12$

Build 10

Build 10

Add ET 12 to the Right

Add ET 12 to the right

Toolface is the Angle Subtended

Dogleg = Length of Slope

Drop with Left Turn

Calculating High Side and Lateral Tortuosity

- Calculate Build Rate and Turn Rate for each interval
- Convert Turn Rate to Lateral DLS (Effective Turn Rate)
 - ETR = Turn * sin (inclination)
 - (Use average inclination for interval)
- Calculate δBR and δETR from one interval to next (as absolute values)
- Total Build = Σ BR x δ Md Unwanted build = Σ .5 x δ BR x δ Md
- Total ET = Σ ETR x δ Md Unwanted ET = Σ .5 x δ ETR x δ Md
- High Side Tort Index = Unwanted Build / (Total Build Unwanted Build)
- Lateral Tort Index = Unwanted ET / (Total ET Unwanted ET)

Calculating High Side and Lateral Tortuosity

- Calculate Build Rate and Turn Rate for each interval
- Convert Turn Rate to Lateral DLS (Effective Turn Rate)
 - ETR = Turn * sin (inclination) (Use average inclination for interval)
- Calculate δBR and δETR from one interval to next (as absolute values)
- Total Build = Σ BR x δ Md Unwanted build = Σ .5 x δ BR x δ Md
- Total ET = Σ ETR x δ Md Unwanted ET = Σ .5 x δ ETR x δ Md
- High Side Tort Index = Unwanted Build / (Total Build Unwanted Build)
- Lateral Tort Index = Unwanted ET / (Total ET Unwanted ET)

Combined 3D Tortuosity Index = $\sqrt{(Highside TI)^2 + (Lateral TI)^2}$

Vertical Curvature (normal offshore well) VTI = 0.9

Lateral Curvature LTI = 1.91 3D TI = 2.11

Traditional TI based on DLS alone = .45 (looks OK?)

This well had a vertical TI of 1.00 and Lateral TI of 2.23 ! Combined 3d TI of 2.44 ! The driller could not hold Toolface

Measuring High Resolution Tortuosity

- Uses all available data
- Assesses true motor yield functions
- Models a true trajectory in 3D
- Does not miss key points
- Informs T&D and Hydraulics calcs
- Trains DDs or Automation to minimise tortuosity
- Allows proper assessment of impact at two thresholds

Tortuosity Thresholds

 1. Stressing Casing

2. Stressing
 Pipe

DLS	13 3/8"	9.5/8"	7"
°/100	17 1/4	12 1/4	8.5
1	89 ft	71 ft	54 fi
2	63 ft	50 ft	38 fi
3	51 ft	41 ft	31 ft
4	44 ft	35 ft	27 ft
5	40 ft	32 ft	24 ft
6	36 ft	29 ft	22 ft
7	34 ft	27 ft	20 ft
8	31 ft	25 ft	19 ft
9	30 ft	24 ft	18 ft
10	28 ft	22 ft	17 ft
11	27 ft	21 ft	16 ft
12	26 ft	20 ft	15 ft
13	25 ft	20 ft	15 ft
14	24 ft	19 ft	14 ft
15	23 ft	18 ft	14 ft
16	22 ft	18 ft	13 fi
17	22 ft	17 ft	13 fi
18	21 ft	17 ft	13 fi
19	20 ft	16 ft	12 ft
20	20 ft	16 ft	12 ft

Two thresholds of acceptable tortuosity

- The amber area warns 'Encroaches on casing'
- The Red area warns 'Encroaches on drillpipe'
- This can be measured by modelling a tubular set in the wellbore and reporting stresses necessary to constrain within the hole.

Loch Ness Test Trajectory

- Inverness, Scotland
- Loch is over 900 ft deep with very steep sides – good analog for a well trajectory
- 1250 ft 8 inch PVC Pipe
- Stable and magnetically clean
- Tortuous Seabed Profile
- Nearby glens for hiking include
 - Glen Livet, Glen Morangie
 - Glen Spey, Glen Fiddich

Vertical TI 1.77, Lateral 0.46 & 3D 1.83

50th General Meeting October 3rd, 2019 Calgary, Canada

ISCWSA 50TH Mtg.

Questions ?