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SUMMARY

An error model for analysing borehole position accuracy has being developed.

The model is based on the error being described in terms of the covariance matrix. Propagation of error
from measurement to position uncertainty is then found by linear transformations of the covariance

matrix. Main advantages of the outlined methodology are:

e Systematic and random errors are treated in a unified framework.

e The error model is flexible, i. ¢., not operational, sensor, or tool specific. New positioning tools can

casily be incorporated.

e Several error sources are handled by the simultaneous use of the respective covariance matrices.
e The model handles errors that are systematic on some scale and random on other scales, both within a

single well, for single or multiple surveys, and for multi-well surveys.
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1. Introduction

1.1  Project background

Accurate borehole positioning, and knowledge of the accuracy, is of increasing
importance to the petroleum industry.

The increasing number of wells drilled from a single platform, the needs to precisely
reach distant and small target zones, and the advent of horizontal, multilateral, extended
reach, and designer wells put strong demands to the directional drilling and surveying
methods.

Thus, for such diverse tasks as well planning, precise targeting, collision avoidance, and
relief drilling, oil companies and survey companies need reliable estimates for the
position uncertainty.

The error model launched by the pioneers Wolff and deWardt, and later versions of this
model, have long been used by the industry. However, these models have some inherent
weaknesses when it comes to the description of random errors, the combination of
different surveys, and the treatment of errors which are systematic at one level and
random at other levels. Besides, these models often are rather tool specific.

The need for a public, general, and standardising model for error description and
evaluation is realised by an increasing number of oil companies. This report outlines an
error model that has the potential to overcome most problems associated with the
traditional error models.

1.2  Overview of Wolff-deWardt types of error models

In 1981, Wolff and deWardt (WdW) published a model for analysis of error in borehole
positioning (Wolff & deWardt, 1981).

The model assumes that errors associated with measurements with a single instrument
(sensor), and in a single survey, are systematic. Furthermore, errors associated with
different instruments or surveys are assumed independent.

For example, the model would consider the azimuth error due to uncertainty in magnetic
north to be systematic at all measurement stations in one survey, but independent of
other azimuth error sources, and independent of magnetic north uncertainty at other
surveys.

Tie ongihar’ WaW 'moael’considers six error parameters:

e Compass reference error

e Magnetic compass error

e Gyrocompass error

e Inclination error (including gravity-dependent sag effect)
¢ Relative depth error

e Misalignment error
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The model has some restrictions on the geometrical variations, and mirrors the typical
well geometry in the early eighties; small azimuthal variations and inclinations less than
70 degrees. Today’s development of designer and horizontal wells demands a more
flexible model.

Based on the WdW model, a variety of other models have been developed. Typical
extensions are inclusion of additional, tool-specific error parameters, and error
parameters depending on geographical location. Furthermore, as surveying tools become
increasingly more accurate, attempts are made to include random errors in the WdW
model. This is often done by representing the random terms by equivalent systematic
terms, and may lead to erroneous results. For newer instruments there is a need to come
up with a model which includes random effects in a proper way.

1.3 The concepts of random and systematic error

Traditional error propagation models distinguish between random, systematic, and gross
errors. Gross errors (blunders) will not be treated here.

The conceptual division between systematic and random errors is somewhat
unfortunate, as it leads to models for error propagation that are not easily combined.
This implies that it may be difficult to compare the effects of random versus systematic
errors in an actual case.

From an error model point of view, however, the difference between random and
systematic errors is no essential difference, only one of degree. The concept of
correlation ties these two types of error together (Appendix A).

When a measurement is done, the error associated with this measurement may depend
on errors associated with other measurements. If the dependency is strong (high
correlation), the error is rather systematic. On the other hand, if there is no apparent
dependency (low or zero correlation), the error tends to be random.

These concepts are perhaps most easily understood when considering a specific sensor
in a single survey. However, the concepts apply as well to the combination of
measurements from different sensors or tools, and to repeated surveys and multi-well
surveys.

In addition, the nature of the error may change as one consider different length scales;
one error parameter may behave rather systematic on a local level (e. g., in a particular
well), while becoming more random on a regional scale (over surveys covering a whole
reservoilr).

The residual azimuth error from the calibration procedure of an azimuthal sensor is an
example of a typical systematic error. Improper or missing corrections for sag,
wireline/drillstring length, drillstring magnetism are examples of other errors which
mostly behave systematic.
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The sensor readings themselves are normally random. Misalignment will also give
random effects for a lot of survey operations.

Some errors will have systematic effects in one survey, but will be completely
randomised to another survey. Tool specific systematic errors are examples of errors
which are uncorrelated to the similar errors for another tool.

When drilling several wells from the same template, the position uncertainty of the
template location will make the total uncertainty for one wellbore correlated to the
others. This is an example of systematic errors which influence several wells.
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2. Overview description of the IKU error model
2.1  Philosophy

The main task of any error model is to describe the propagation of error from
uncertainty in the measured quantities into position uncertainty.

The idea of including all factors which influence the uncertainty of the wellbore leads to
a unified framework. Figure 2.1 shows examples of uncertainties that may be handled
by the IKU model. The list is not exhaustive.

Directional measurement:
Traditional

Inertial tools

Future tools

Start position:
Surface navigation
Underwater navigation
Relative / absolute

Error model

Geo-reference:
Magnetics
Gravimetrics
Geodetic datums
Relative / absolute

Figure 2.1  Examples of uncertainty parameters covered by the model.

The model described here is based on the fundamental assumption that all steps in the
mathematical relations of error propagation can be linearised. This is valid as long as all
errors associated with a specific measurement - fluctuations from the “true”™ value - are
small. This assumption is valid for borehole positioning.

It follows from this assumption that the propagation of error is completely described by
the theory of linear algebra, thus: any transformation of error can be represented by an
appropriate matrix.

The model input are typically sensor or instrument uncertainties, represented by the
covariance matrix. Other input variables could be uncertainties from rig/template
positioning and the survey operation. The output then appears as another covariance
matrix, resulting from manipulation of the input with the proper transformation matrix.

As an example, Figure 2.2 shows the covariance matrix for the input to the accuracy
estimation for two wells.
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2; AX, AD, AA, Al, AX, AD, AA, Al

Az R — -

T | ax, Cxixi| Cxio1 Cxiar Cxin||Cxixe Cxioz Cximz Cxin

/’ AD, Co1x1 Corar Co1n||Corxz Coroz Coraz Corn

AA, Carxa Caron Catn||Carxz Caroz Caraz Carne

ig; Aly Cixt Cior Cua m Cixze Choz Ciaz Cur

ad, AX, Cxaxt Cxapt Cxemr Cxan||Cxexz Cxapz Cxenz Cran

AD, Co2x1 Coz2p1 Co2ar Cozn||Co2xe Co2p2 Cozaz Cozi

AA, Crzxt Cazor Cazar Cazn||Cazxe Cazoz Cazaz Cazi

Al | Cexi Ceot Coar Con||Coxe Cioz Coae Cun

Figure 2.2 Example of input covariance matrix for two wells.

The nomenclature is as follows:

- covariance

- start position (X, v, z)

- azimuth observations

- inclination observations

- depth observations

- well No. 1

- well No. 2

- uncertainty in the actual variable

=0 == X0

If the start positions X, and X; are correlated, the sub-matrix Cx;x> will contain the
information of this property. It is worth to remark the total flexibility of the model ): all
the observations and other factors can be handled as independent, partly independent or
totally dependent, within and between each observation group.

The input covariance matrix is manipulated by the transformation matrix A, to produce
the output covariance matrix, as shown in Figure 2.3. The A matrix also takes care of
coordinate transformation, if necessary, and accumulation of error during a survey. The
output covariance matrix contains information on the position uncertainty. From this
matrix, the error ellipsoid and similar error representations can be derived.
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Ccov = A cov AT

- * T
COV,,,=A*COV, .. *A
Figure 2.3 Propagation of error from measurement to position estimate.

2.2 Comments on model implementation

At this point, we should make some general comments related to the actual computation
of the matrices.

Firstly, the covariance matrix is symmetric (this follows from its definition), and this
can be used to leave out nearly half of the matrix from the calculations.

Secondly, the covariance matrix can be split into sub-matrices for efficient calculation
of both the matrix itself, and the following manipulations. The sub-matrices may be
those indicated in Figure 2.2, or they may be smaller or larger. The advantage of
splitting the matrix becomes clear when one considers that many (perhaps most) of the
elements are zero; this corresponds to independent observations. For example, the
measured depth D should be independent of the start position X, implying that Cpx (and
Cxp) only contains zeros. Therefore, one do not have to calculate the trivial results from
Cpx element by element.

The important message from these considerations is: The model described in this report
requires calculation of only those parts of the covariance matrix, i. e., those dependency
relations, that are considered relevant by the user. The flexibility of the model allows us
to include more dependency relations than is usually done; however, the model’s level
of sophistication can be adjusted to match the demands of the actual case.
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3. Qutline of the IKU error model
3.1  Choice of coordinate system

The well geometry is generally described in either of two coordinate systems, the NEV
(North-East-Vertical) system or the DAI (Depth-Azimuth-Inclination) system,
depending on the measurement principle of each instrument.

However, when doing a quantitative analysis of error propagation, it is important to use
a uniform representation. We have chosen to perform the calculations in the NEV
system; therefore, we need to transform the DAI coordinates into this system.

3.2 Transformation of coordinates

The formulae transforming from DAI (= spherical) to NEV (Cartesian) coordinates can
be found in any mathematical textbook. In our case, the relations are slightly more
complex, as we consider several ways of representing the geometry of the wellbore, and
using information from more than one measurement station to determine the position.
The representations are described briefly below; Appendix C gives more details.

Anyway, the transformation formulae describe non-linear relations. When considering
errors (uncertaintics, small fluctuations around true value), it is useful to linearise the
equations, i. ¢., cast the relations into the form:

Enep = AT Epal

where € is the error vector in the two coordinate systems, and A is the transformation
matrix. €xgp contains uncertainties in N, E, and V components of the position, at each
measurement station in the well. The elements in A are coefficients from the Taylor
series expansions of the non-linear DAI-to-NEV relations; only linear terms (first order
partial derivatives) are retained'. Details are given in Appendix C.

It should be noted that the following formulae can be applied also if the measurements
give NEV coordinates directly, like inertial systems doj; in this case, A is simply the
identity matrix.

! Note: The lincarised description is valid only when the errors in €, are small, in particular, we must require that
uncertaintics in inclination and azimuth are close to zero. This does not hold for a vertical or near vertical well, where
the azimuth is undefined; a measurement may give any value between 0 and 27 In this case, the whole azimuth
reading should be considered an uncertainty, and the sine or cosine of this angle can not be linearised. To overcome
this problem, we would need to know the (mathematical) relation between azimuth uncertainty and inclination, a
relation which depends on the operational principles of the measuring instruments. This problem should be subject to

a closer study, but will not be pursued here.
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3.3  Propagation of error

The error vector exgy comprises the contribution to the total uncertainty from each
measurement station. To get the total (accumulated) uncertainty in position at station k,
we have to sum the first k elements of engy for each Cartesian component. This can be
done by the summation matrix By:

A.Pk = Bk *SNEV

B is constructed from row vectors where the first k elements are ones, and the
remaining elements are zeros. Details are given in Appendix C.

Combining the above equations, we have:
APy =By *A¥epy

Knowing the position uncertainty vector APy, which has elements ANy, AEy, and AV,
we may calculate the covariance matrix, which by definition is:

Covpy = E{APR * APkT}

E{...} denotes expectation value, which is to be taken for each element in the resulting
(3 x 3) matrix. The diagonal elements will be the variances in N, E, and V coordinates,
respectively, while the off-diagonal element show the covariances between the
corresponding coordinates.

Inserting the previous result, we may express Covapi by the covariance matrix of the
measured quantities:

Covapy = E{ﬁk FA*epa *epart *AT* lp-s’kT}
or
COVAPR - ﬁk * A*COVDAI *KT *ﬁkT

This equation describes how the uncertainty in the measurements €py; is transferred into
a position uncertainty APy through the geometry-dependent coordinate transformation
matrix A, and the cumulating matrix By.

The description covers both random and systematic errors in the measured (DAI)

parameters:

e Random errors in one measurement are independent of all other measurements. This
implies that only the diagonal elements in Covpa (i. €., the variances) differ from
zZero.

e Systematic errors create dependency between all measurements. This is represented
by non-zero elements in the whole Covpa; matrix.

WHossuk 32087 LOMADMRAPPORTIREPORT 1 doc\HW\10/07.05.96
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The approach gives some important advantages:

o If different error sources affect the same measurement, the covariance matrix can be
constructed as a combination of individual covariance matrices.

e Errors that are dependent over just smaller sections of a well, for example, are
represented by a diagonal band of non-zero elements in Covpay, the magnitude of the
elements decreasing away from the main diagonal. This feature is valuable for
handling error sources that by nature are systematic on a local level, but becomes
random on a regional scale.

3.4  Effect of wellbore representation and weighting of measurements on
accuracy analysis

3.4.1 Two measurements

Three methods of wellbore representation are investigated with respect to how they
affect the model performance, through the transformation matrix A:

e The average angle method
e The “average attitude™ method
¢ The minimum curvature method

The methods are presented in detail in the Appendices E, F and G.

Each of these methods includes measurements done at two neighbouring stations. The
first two methods have the option of putting different weights on the two stations; the
minimum curvature method implies equal weighting on the measurements.

Through analytic and numerical analysis, the following conclusions are drawn, as far as

error propagation is concerned:

e With normal dogleg angle between adjacent measurement stations (< 15-20°), the
minimum curvature method is just a special case of the “average attitude™ method.

e For all practical situations (number of stations > a few tens), the average angle and
the “average attitude™ methods yield the same answer. The effect of weighting is so
small that it can be neglected.

3.4.2 Several measurements
The effect of two processing techniques has been investigated:

e Smoothing
e Resampling

Details are given in Appendix D. The effects of both techniques are shown to be
negligible. For error propagation purposes the transformation from measurements to
coordinates can be described in a very simple manner.

VWBossuk 12087 I0MADMRAPPORT\REPORT1 . doc\HW\L 1'07.05.96




e L.

3.4.3 Recommendations

These results indicate that the wellbore representation has no significant influence on
the error propagation analysis. Thus, the choice of representation may be based on
practical criteria like efficiency of calculation etc.

In addition, the resampling example in Appendix D indicates that a truncation technique
may be used to speed up the computation.
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4. Conclusions

The initial idea of developing a model which includes all actual error sources seems to
have succeeded. The main properties are listed below:

General and flexible

Any sensor, tool and operational method

Easy incorporation of future tools

Random and systematic errors in a unified framework

Simultaneous use of covariance matrices for all relevant error sources

Covers all possibilities from single survey to multiwell/multisurvey situations
Any confidence level by scaling

Gives proper input for decision making

Applicable in planning, drilling, and surveying phases

e Can be implemented to various levels of sophistication, dependent on application

So far, no error source is identified which can not be implemented in the model.

The development of this model into applications which are useful for the industry,
would involve the following main tasks:

e Definition of input interface, i. ¢., between error parameters and model
e Definition of outputs / presentation

e Modelling of tool measurement principles

¢ Evaluation / quantification of error parameters (inputs)

e Investigation of earth reference systems (magnetism, gravity, etc.)
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Appendix A Variance, Covariance and Correlation

Let X be a stochastic vector with the expectation E (X). The vector € = X - E (X) defines
the difference between the variables and the respective expectation.

£ x) [E(x)

.| |E
e=| 52 — X —E(X)= X2 |_ ("2)
. x.) |E(x,)

The covariance matrix for the variables X is defined by the following equation:

- — T
T, =COV, =E(e-¢")
The covariance matrix is symmetric and the diagonal elements represent the variances:

o3, = Var(x;) = E(e-z)

1

The elements outside the diagonal is the covariances:

Ty.x. = Cov(x~ x~) = E(ei -ej)

™) 177

When the covariance between two variables is zero, the variables are said to be
stochastic independent. Otherwise they are stochastic dependent; which means that there
are systematic effects in the system. The dependency between variables is often
expressed by the correlation coefficient:

pxixj = Txi,xi I(Gxi -O‘xj)

Px;x; = Cov(x;.x;)/ \/(Var(xi)- Var(xj))

The covariance can be constructed when the variances and the correlation coefficient are
known

Cov(x;. %) = P,y (Var(x,) - Var(x;)
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Appendix B Quality parameters for position accuracy

When evaluating the quality of estimated parameters the variances and covariances play
an important role. For the experienced professional the variances (or the square root
variables, standard deviations) themselves are valuable when making decisions.

Adding knowledge of stochastic density functions of the parameters, the standard
deviations can be derived to 1) confidence intervals and 2) test observables in stochastic
tests. Thus, the professional makes his decisions based on more objective information.

3D accuracy

The accuracy of the location (orthogonal Cartesian coordinate system) of a point is
described by the covariance matrix elements

Var(x) Cov(x,y) Cov(x,z)
Ty =X, =|Cov(y,x) Var(y) Cov(y.z)
Cov(z,x) Cov(z,y) Var(z)

The matrix is symmetric and positive definite. The covariance matrix can casily be
transformed to any orientation of the coordinate system.

One distinct orientation of the system is essential when regarding the simultaneous 3D
accuracy. Making an eigenvalue analysis of the covariance matrix, Zy,, the ecigenvalues
represent the variances for three new variables derived by an orthogonal transformation
of the xyz-system to the uvw-system. The coordinate transformation is done by a matrix
constructed from the eigenvectors obtained in the eigenvalue analysis.

u X
U=| v |=A-X =(cigenvector matrix)-| y

w Z

The covariance matrix will by conventional error propagation be:

A 0 0 Var(u)  Cov(u,v) Cov(u,w)
.= ;.ex;iT =0 A, O [=| Cov(v,u) Var(v) Cov(v,w)
0 0 A4 Cov(w,u) Cov(w,v) Var(w)
The key property of this coordinate system (uvw) is that the covariances equal zero): the
variables are stochastic independent to each other. The greatest variance represents the

direction with greatest uncertainty.

The error ellipsoid is closely linked to this special orientation of the coordinate system:
e The cigenvectors give the directions of the ellipsoid axes.
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e The eigenvalues are the position variances in these directions; i. e., the squared
lengths of the ellipsoid axes.

2D accuracy

The 2D accuracy can be derived from the general situation described above. If one of
the coordinates is out of interest, we simply eliminate all the elements for this in the
original covariance matrix. Thus we have the 2D covariance matrix. If the xz
uncertainty is desired, we eliminate the y components.

Var(x) Cov{x,y) Cov(x,z)

Cov(z,x) Cov{z,y) Var(z)

s - Var(x) Cov(x,z)
xz_(Cov(z,x) Var(z))

An eigenvalue analysis of X, gives the 2D error ellipse, similar to the 3D situation.

1D accuracy

The 1D accuracy is easily described when picking up the variance for the actual
component in Zyy,.

If the 1D accuracy is wanted for any direction, this can be achieved by making the
belonging transformation from the original Xyz-system.

X
L=(s)=AX=(- = )y
Z

lT

var(s)=A'-Z, -A

Generally, the variance for any defined direction is the squared distance from origo to
the surface of the “normal point surface” to the ellipsoid with the semi axis

Vi and s

Confidence intervals

Talking about interval estimation, the confidentiality itself is a key parameter.
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Another key parameter is the standard error ellipsoid which grows from the result of the
eigenvalue analysis. Constructing an ellipsoid with the square root of variances for u, v,
w from the eigenvalue analyses, different confidential intervals can be achieved by a
linear scaling of this ellipsoid. For a 2D (and 1D) situation the standard ellipse plays a
similar role.

The third key parameter is the stochastic density functions for the variables. Assuming
the observations to be Gaussian distributed, the derived coordinates also will be
Gaussian distributed. (Because of the linear relationship in the sense of error
propagation.)

The above mentioned assumption will give the following relations between the standard
deviation ¢ and the confidence levels for the accuracy measures: ellipsoid, ellipse, and
linear.

Confidence level 3D ellipsoid 2D ellipse 1D linear
19 % 1.0c 02c
39 % 1.0 050
68 % l4c 1.0c
74 % 200 1.56 l.lo
90 % 250 210 1.6 0
95 % 28¢c 240 200
98 % 3.]lc 270C 230
99 % 340 300 260
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Appendix C Error propagation

Note: Within this appendix, xyz coordinates describe the NEV (North-East-Vertical)
coordinate system.

We assume that azimuth A, inclination I, and the distance R between adjacent stations

have been measured. The change in x coordinate from one station to the next can then
be written:

8x; = Xjy = %) = f(Rj11. A AJ+1’IJ’IJ+‘)

Notation: R is differential distance, in contrast to the accumulated distance D. The differential distance between

stations j and j+1 is denoted R;,), since it can not be calculated before measurement j+1 is done.

An uncertainty in the measurement transfers to the x coordinate according to:
SX +€ =f ( j+|+8Rj+1’A +€Aj’ ..... )

Linearization (Taylor expansion of fy) yields:

of, of, of, of, o,
€= 3R, 8R,+| + 2, Eat 2A,,, EAj+ +§_j- 5t L, €|,+l

which may be written in matrix notation:
Ex = ;tx * €L

where
Ex = [EX] ...Exn_l]T

T
EL =[SRI-"SRnsAl"-SAnsll'“sln]

n measurement stations give n-1 differential distances Ax. By definition, R, is not measured, so gg) = 0.
Notation: Subscript L for “Logged data”.

—~

Ax=[5xR A -‘ix]]

0 /R, 0
0 0  of/dR;

o

xR 0

0 o /3R,
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A JOA, O /IA, O
B 0  Of /dA, Of /oA,
el 0 0
afx /aAn-l afx /aAn

o 3, o I, O
0 af/al, af /ol
0 0 0
afx/aln--l afx/aln

A =

The first column in a,g, and the first element in €, might be omitted. The intention of including them here is to give a
unified presentation.

In the above equations, elements within one column are seemingly identical. This is not the case if the implicit
weighting factors are taken into account (Appendices E, F, G).

With analogous notation for y- and z-components:

€x AR A A
€y |Z|ar  Aya Ay ey
€z LR Ap Ay

The uncertainty in each component at station k has accumulated through the previous
stations:

A, ] [box 0.0 0.0 ey
AY, |=| 0.0 b, 0.0 [ey
AZk 0..0 0..0 bn—l.k £y

where by, x is a vector that sums the first k elements of a total of n-1:

bk =[1111.10..0] (k ones, and (n-1)-k zeros)
Combining the above equations, we may write:
APk = ﬁ * R * SL

where
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Dimensions: AP, 3x 1
B 3 x 3(n-1)
A 3(n-1) x 3n
£ 3n x 1

The covariance matrix for the measurements is by definition:
— o T
Covy = E{eL gL }
where E{...} denotes expectation value.

This is a (3n x 3n) symmetric matrix. The covariance matrix for the uncertainty at
position Py becomes:

Cov apy =E{(§*R*€L)*(€LT*KT*ET)}=§*R*COV£L*KT*§T

This is a (3 x 3) symmetric matrix, which contains both the variances in xyz-
components (diagonal elements) and covariances between the components (off-
diagonal) elements. See Appendix B for further interpretation.

Some observations

If the xyz coordinates are measured instead of the DAI parameters, the above notation
may still be used. In that case, the coordinate transform matrix A should be an (n x n)
identity matrix.

If measurements from more than two stations contribute in the determination of dx;

(initial equation), the formulae above may still be used. In that case, the A matrix will
contain a correspondingly higher number of non-zero diagonals.
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Appendix D The effect of smoothing and resampling on the error
analysis

Smoothing effect

—&— Smoothed obs., L2
m Observations, L

observation value

observation No. (i)

The figure illustrates the smoothing of for example azimuth observations along the well.
The smoothing is done through the transformation

L=W-L
Normally W will be a symmetric matrix with a diagonal band structure.

If the smoothing shall be meaningful the transformation matrix will have the following

key property:
n
2wy =1 for all values of i
j=1
n
2w =1 for all values of j

i

We simplify the demonstration to cover just the effect on the x coordinate through the
linear transform A.
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The original system Smoothed system
x=A-L X =A-L, (linear relationship)
I, =A-Z AT L, =AL, - AT (error propagation)

TAT
I, =AW-I, -WA
In this simplified example A will have the following form
A=(a @ .coveennnn.. a,), where the variation from one element to the next is small,
due to small geometric changes from one station to the next. The curvature radius is

large compared to section length.

The multiplication A-W will give a result nearly identical to A.

Wi Wiz
War W22 - : L itk
(ajas.....a;....a,)- =1. . J{;..w"
Wi - eaC
j=i-
W .

Qik T Akl Zvvrvrrnrnnan S i =i = 4
j=1+k Jj=1+k

Zaj TWi = iji =4
j=i-k jeick T =

This means that A = A-W which gives:

Iy =Xy,

Position accuracy is nearly invariant of smoothed observations.
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Resampling effect
" | |
o
(=]
3
s | | | |
5 | | a @ Resampled obs., L2
§ m Observations, L
; e c—— —
w
G ]
° | |
|

observation No. (i)

The figure illustrates resampling of an observation series.

n - number of stations
n> - number of stations in each resample (n2=3 in the figure)
n/n, - number of resampled observations

Using the same example as before, this method make the elements in the transformation
matrix A to be n, times as large than “corresponding” elements in A, this because of
enlarging the section length with the factor nj.

Firstly, we will look on the contribution from random errors. The diagonal matrix
£y, will have elements which is n; times less than the “corresponding ones in Z.

The original system Resampled system

x=A-L Xxa=Ax- 1, (lincarised relationship)
T, =A-I -AT Ly, =AyZ, -Ag (error propagation)

To simplify the demonstration, we introduce 0'12 = 0‘% T = 0'%0, and

A= a3 =i = a (curvature radius is large compared to section length).
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Th original system Resampled system
2 (<2 3\
000 0 Coo 0
2
0 o ny
I = 00
py , =
2
Soo
\ nz )
A=(a............ a) Arx=(mra........... )
n

L2 2 2 2 < 2 O 2 2

I, =2Xaj o5 =n-a” Gy Z,, = 2(ny-a)" = =n-a"-op
i=1 i=1 Ny

The effect of systematic errors is demonstrated below.
The original system Resampled system

6 Ony - - Gty oo

2. o2 2. o2
ZL — 00 o - - ZL-, - 00 00
A=(a................. a) As=(az.......... )

2 2 2 2 2 2
2)( - O-OO(Z:") 2x2 — Gm(zaq) — Gm(za)
Conclusion

The estimation of position acccuracy is nearly invariant of smoothing and resampling
the observations.

Remark

The demonstration above is not meant to be a strict mathematical proof, rather an

introduction and indication of the effects. However, the conclusion holds for wellbore
positioning.
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Appendix G Coordinate transform matrix for “minimum
curvature” wellbore representation

The segment is part of a circle. The direction vectors U; are tangents to this circle.

If U and Uj,, are parallel, they either point along the connecting line, which reduces the geometry to a
simplified version of the linear segment representation, or they have a sideways shift, which must be
treated with a more complex segment. The following description assumes that U; and Uy, are not parallel.

The two vectors span the plane in which the circle lies. The dogleg angle o; between U;
and Uj,; will also be the top angle of the circle sector; thus, the circle's radius is:

_ Ry
e JAJ

The chord connecting stations j and j+1 will be directed along the resultant vector
Uj+Uj,1, and its length is:

s=2r%* sin(a%)

The position of station j+1 is thus given as:
2R, sin(o/2) [U; +U;,,

S;

P.., =P +
| i1 aj

where the first bracket denotes the distance from j to j+1, and the second is a unit vector.
Insertion of the expression for S; leads to:

tan(a j /2

Pj+l=Pj+Rj+l oy ) [U_|+U]+l]
]

We now assume that the dogleg angle is small, such that tan(o/2) = /2. Figure G.1
shows that this assumption is excellent for most wells, with some tens of meters
distance between measurement stations.

VWBossuk 32087 10MADMRAPPORTIREPORT 1Ldoc\HW\G2W7.05 96



o @ L.
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(tan(A/2) — A/2] / tan{A/2)
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Figure G.1  Relative departure of A/2 from ran(A/2).

The assumption leads to:
1
Pj+l - PJ +—2—RJ+|[U] +Uj+l]

or, for each component:

f, = ; RjH[sin(Ij)cos(Aj)+sin(lj+|)cos(Aj+l)]

f, = éRj_H[sin(Ij)sin(Aj) + s.in(Ij+1 )sin(AM )]
f,= % RjH[co:(Ij) + cos;(Ij+l )]
We observe that this is just a special case of the “average attitude™ representation. Thus,

if the dogleg is sufficiently small, it makes no difference to the propagation of error
whether the wellbore is described with lincar segments or circular arc segments.

The coordinate transform matrix is therefore equivalent to the transform matrix in
Appendix F, with w=w,=0.5.
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