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Abstract

Reliable determination of the borehole position uncertainty is essential for a number of
important tasks: Analysis of well collision risk, geosteering, targeting, relief well drilling, well
planning, and analysis of surveying tool performance and data quality. For this purpose, a new
and general error propagation model has been developed. The paper focuses on the
methodology itsell and some applications.

The new model has several advantages with respect to established models:
e systematic and random errors are treated in a unified framework
e uncertainty at any level (sensor, tool, operation, and field)
e any possible correlation of data, i.c., from different tools, surveys, wells, or a
combination of these

A number of commonly used surveying tools has been analysed, and the results are compared
to calculations done with existing error models. The results convincingly demonstrate the new
model’s ability to handle both traditional MWD tools, and gyro tools. Furthermore, future tools
can be easily implemented. The important link between borehole position accuracy and
reservoir description accuracy is also demonstrated.

The error propagation model can be applied both in the planning stage, during drilling, and for

analysis of surveys in existing wells. The methodology thus meets the increasing demands for a
general and flexible method for efficient assessment of borehole position accuracy.
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Introduction

The increasing number of wells drilled from a single platform, the needs to precisely reach
distant and small target zones, and the increase in horizontal, multilateral, extended reach and
designer wells put strong demands to the drilling and directional surveying methods.

In 1981 Wolff and de Wardt presented the “Systematic Error Model” [1]. This was a pioneering
work putting the most significant error terms (at that time) into a systematic error model. The
model has to some extent become an industrial standard for directional surveying. However,
further development of tools, operational procedures and drilling of long reach and designer
wells have enforced more advanced models.

Today’s error models often are tool specific and handle only systematic errors and/or effects.
Some models are used to describe other tools than designed for, with confusing and possibly
erroncous results. Existing error models also suffer from the lack of implementation of tool-to-
tool, survey-to-survey and/or well-to-well correlations. The need to handle such characteristics
is increasing with accomplishing complex and marginal drilling programs.

An error model should be flexible and suitable for both today’s and future needs. The service
companies and the oil industry has realised the need for new and improved methods to calculate
reliable wellbore position accuracies, ref. [3], [5], [6]. In 1995 there was established an
“Industrial Steering Committee for Wellbore Surveying Accuracy™ which pushes the
standardisation of error models.

The work presented in this paper on error propagation [4] is fundamental for the development
of such models. It is a general and powerful approach to handle propagation of errors caused by
sensors, operations and environments to position uncertainty (Figure 1). The model is flexible
and input uncertainties can be implemented at any thought level. However, how these
uncertainty parameters arise, and their magnitudes, are external to the methodology described
in this paper. Neither are blunders (gross errors) treated here. The paper gives a description of
the methodology, and shows its application to several important example cases.

Measurements
Directional tools
Geosteering tools

Operation

Geo-references
Magnetic / Gravimetric - Error Quality measures

Geodetic Propagation Ellipsoid Parameters
Geologcf Model Confidential Levels
tart posmon
Surface nav.
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Figure | Error model structure.
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Description of the model

Error characteristics

Associated with the measurement of a quantity there will always be some uncertainty, or error,
due to imperfections in the measuring apparatus, calibration of reference etc. This uncertainty
itself can be of either systematic or random nature, and on the other hand it can propagate
systematically or randomly to the position estimates. Table 1 lists examples of the different
situations.

Table 1 Examples of error types. These examples are given for illustration purposes only,
and are not exhaustive.

Error nature —
Random Systematic
L Error propagation

Sensor misalignment
Random Sensor readings with random
rotation of tool

Random azimuthal error | Sensor misalignment without
Systematic implies a systematic rotation of tool
shortening of depth

However, some errors have a nature and propagation which place them in more groups at the
same time, like for example the residual error in the geomagnetic field.

The dependence between uncertainties on consecutive measurements is expressed
mathematically by the correlation coefficient, p, where p € [—l,+l]. Pxix;= 1 means that the
errors on measurements X and X (€x and €y, respectively) are completely dependent, i. e., the
error is systematic. pxixj = -1 also indicates complete dependence, but in the sense that €y; is
negative when gy; is positive, and vice versa. Two totally independent measurements is
expressed by pxx; = 0, 1. e. the errors is random from one measurement to another. The
covariance, T, for two measurements is defined as

TXixj = Pxixj  Oxi " Ox;j =E(8Xi ‘€x,') (1
where Gy; and Oy; are the standard deviations of X and X;, respectively. E() is the sign for

expectation. Thus, the covariance depends on both the magnitude of each separate measurement
uncertainty, and how strongly they are linked.
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Error Propagation

The covariance matrix, Zygas, 18 a systemated representation of the variances and covariances
for a set of n measurements:

-

Oxi” Txaxe - Txixn
2
T Oxs~ .. T
= T _|Tx2x1 Ox2 X2Xn
LMFAS_E{EX'EX }— (2)
2
Txox1 == - Oxn

This form is very powerful and efficient for computation of covariances for parameters derived
from the measurements. The general formulae (matrix notation) for error propagation thus
becomes:

Tpos = A Eypas AT (3)

Zpos 1s the covariance matrix for the position parameters from which the error ellipsoid and
similar error representations can be derived. The matrix A shows the linear part of the
relationship between the position parameters and measurements: £pn5 = A -Eypag.

For some instruments and surveys there are redundant measurements. An advanced use of these
is to run a least square adjustment. The covariance matrix for the position parameters will thus
become:

Zpos = (DT 'Z;‘IIEAS ‘D)_l (4)

where D is the design matrix in the system of error equations [2].

Position accuracy

The above derivation is based on the 1-¢ (one standard deviation) notation for clarity reasons
only. The input uncertainty numbers may equally well be at any other confidence level. The
final output (1-D) of the model will be at the same confidence level as the input. It is, however,
important to remember that error ellipses (2-D) and ellipsoids (3-D) will have lower confidence
levels than the input. To avoid confusion, it is therefore recommended to apply scaling factors
to ¢ only at the end of the calculation.

The position covariance matrix is closely related to the error ellipsoid, and thus has several

useful properties:

e The eigenvectors of Zpos are directions of the ellipsoid axis (in the NEV co-ordinate
system).

e The eigenvalues of Xyg are position variances in these directions, 1. e., squared lengths of
ellipsoid half-axis.

e The projection of the uncertainty ellipsoid onto a plane corresponds to the 2-D covariance
matrix obtained when eliminating all elements related to the unwanted dimension from the
original (S'D) Epos.

e The uncertainty in any direction is found by rotation of the co-ordinate system.
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Generality and flexibility

Figure 2 shows an example where uncertainties in template position X, depth D, azimuth A,
and inclination I are considered for two wells (index | and 2, respectively). These quantities are
collected in a vector of uncertainty, as shown to the left. Uncertainty in template position of
well 1 is represented by co-ordinate uncertainties Ax, Ay, and Az. Depth uncertainties at each of
the survey stations (1, 2, 3, ...) in well 1 are listed as entries Ad,;, Ad),, Ad,s, etc. Then follow
the azimuth and inclination uncertainties, and finally the parameters for well 2. More
parameters or observations can easily be included by extending the vector of uncertainty by the
desired quantities.

The covariance matrix results as the matrix product of the vector of uncertainty with itself, with
the proper correlation coefficient included for each parameter pair (cf. Eq. 2). A basic feature
of the covariance matrix is that it is always symmetric about the main diagonal.

g‘;' AX, AD, AA, Al, AX, AD, AA, Al,
1 —— —
AZ1 pr— — pr— —

> | AX Zyix] Zxio1r Zxiar Zxan||Zxixe Zxioz Zx1az Ixie
/—> AD, EDIXI Zoiar Zoin||Zoixz Zo1o2 Zor1az Zoine
AA, Zarxa zmm Zarn||Zarxe Zato2 Zaraz Zare
Ad,,
Adyy

All z’I1 X1 zI1 D1 I’H Al m z’li X2 z’I1 D2 z'I1 A2 zIl 2
sz EX2 X1 EXZ D1 z)(ZA‘I zxz " z)(2 X2 E)(2 D2 ZXZAZ z)(2!2
AD: zD‘A.’)(‘l 202 D1 z02 Al zl)2l‘l zIZJ2X2 zl'J’A! D2 zD2M! Zl)i!lZ
AAQ zA2X1 2A2 D1 zA2 Al zA2l1 EAZXZ ZAZ D2 zA2A2 EAZIZ
A'z }:l2x1 }:IZDl zIZI\I z’12 " zI2X2 2I2 D2 2I2A2 zmz
—_ — —

Figure 2 Example of input covariance matrix for two wells. Possible subdivisions of the
matrix are indicated by rectangles.

The dependences between observations in well 1 are found in the upper left quadrant of the
covariance matrix, while the lower right quadrant represents well 2. Similarly, any dependence
between the two wells is found in the upper right (or lower left) quadrant. The figure also
indicates the splitting of the matrix to a finer level. Xy,y; contains the information on variances
and correlations for X, y,, and z;; Zx ) (or Zp)x)) gives the dependence between template
position and depth observations in well 1, and so on.

The possibility of sub-division of the covariance matrix makes the methodology flexible and
easy to adapt to specific situations. For many pairs of observations, the correlation may be
known to be negligible, or it may be assumed zero due to limited data material. In such cases,
the corresponding parts of the covariance matrix can be left out before any calculation, thereby
reducing computation time and memory requirements considerably. An example would be the
omission of the upper right/lower left quadrant in Figure 2, if the uncertainties in wells 1 and 2
arc independent of cach other. Several of the smaller sub-matrices may also be zero in a typical
survey case.
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The covariance methodology thus does not implicitly mean heavier calculations than required
by other methods. In general, all the observations and other factors can be handled as
independent, partly independent, or totally dependent, within and between each observation
group, depending on what is considered relevant by the user. The flexibility thus allows for
inclusion of more dependence relations than are usually taken into account. Nevertheless, the
model’s level of sophistication should always be adjusted to meet the demands of the actual
case.

Examples of applications

The Wolff & de Wardt example

As a demonstration of the methodology, we consider the example given in the Wolff & de
Wardt paper [1]. This example is deliberately chosen to show how the terms of a standard error
model are expressed in the framework of a general error propagation model.

The example assumes a straight well section of total length D = 2500 m, with inclination I =
30° and azimuth A = 90°. The well is surveyed at intervals of 25 m, i. ., at 100 measurement
stations. At each station the uncertainty on the measured values are 6y = +0.5° and 6, = *1°,
respectively. Wollf & de Wardt consider the consequences of treating these errors as both
systematic and random.

Errors treated as systematic

The covariance matrix for the three quantities D, A, and I can be split into nine sub-matrices
(cf. Figure 2), each containing 100 x 100 elements:

Z'l)l) ZDA z;Dl

Tveas =| Zap Zaa  Zal (5)
Zp I Iy

In the case of systematic inclination and azimuth errors, we have

(6)

whereas Zpp, Zpa, 201, 2an, 2an 20, and X4 contain only zeroes. ppy = [0] since depth
measurement error is assumed zero, Zpa = [0] because there 1s no correlation between depth
and azimuth measurement errors, and so on. The zero matrices may of course be omitted in the
further calculations; they are included here merely to clarify the general structure of the
covariance matrix.

Errors treated as random

The covariance matrix for the random error case has the same generic structure as that of the
systematic error case. However, cach measurement error on inclination or azimuth is now
independent of the other measurements; thus:
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I 0 0 1 0 0
ZAAchZ see  ses  ees e Z"=G|2 ess  see  sss  vee (7)
0 ... .1 0 ... ... 1

while all other sub-matrices are zero, for the same reasons as in the previous case.

Propagation of errors

For the Wolff & de Wardt example, the error propagation matrix can be written
A=B,"B, (®)

where B, takes care of the co-ordinate transformation, and B» is the accumulation matrix. These
matrices will be the same in both the systematic and the random error cases.

Increments in north, east, and vertical position co-ordinates at each station (i = 1...100) are
expressed, using the tangential method, as

AN; =(D; = D;_;)-cos(A;)-sin(I;)
AE; = (D; = D;_;)-sin(A;)-sin(I;) 9
AV; =(D; = D;_,)-cos(I;)

The co-ordinate transformation matrix B, may be split into sub-matrices, each of size 100 x 100
clements:

Buvo Bana Baws
B =|Bagp Bapa Bag (10)

BAV.D BA\’,A BAV.I

where By p = {aANi /aDj} : 1,J=1...100 gives the linearised relation between measured

depth D and north increment AN, and so on. Inserting Eq. 9 and the particular well trajectory,
one finds that Bax a, Bagp, Bacr. Bav.p. and Bay, contain non-zero elements, while the other
sub-matrices are zero.

In a Cartesian co-ordinate system like the north-east-vertical system the accumulation of error

becomes particularly simple, viz. a summation. In the present case, this 1s accomplished by the
3 x 100 matrix

{1 {o} {o}
B, =[{0} {1} {0} (11)
{o} {o} {1}

where {1} denotes a 1 x 100 vectors of ones, while {0} is a 1 x 100 vector of zeroes.
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The position uncertainties calculated using Eq. 3 are oy = 21.8m, 6 = 18.9m, and ¢v = 10.9m
in the systematic error case: and oy = 2.2m, 6 = 1.9m, and Gy = |.1m in the random error case.
These values are of course the same as those listed in Wolff & deWardt’s paper [1].

For the well trajectory and the measurement uncertainties used in this example, it is easy to see
how the matrix description relates to the equations given by Wolff & deWardt. The covariance
methodology may thus seem to be an unnecessary complex and cumbersome generalisation.
However, the strength of this method becomes apparent when dealing with more complex
situations.

Note also from this example that the random errors are handled as such throughout the
calculation, and within the same framework as the systematic terms.

Analysis of MWD tool uncertainty

A sag and mag corrected MWD tool was implemented in the new methodology, and the results
were compared to a corresponding error analysis made by the service company supporting this
tool. The input error parameters (standard deviations) were supplied by this company. These
parameters describe the following error sources: on azimuth: compass reference error,
declination error, residual error after magnetic interference correction, misalignment; on
inclination: “true” inclination error [1], residual error after sag correction, misalignment. In
addition, error on measured depth is included. The errors are either assumed to be systematic
per se, or they are represented by equivalent systematic error terms. The latter is the case for
the misalignment error.

The error analysis of the service company also covers the conversion of sensor uncertainties
into attitude (azimuth and inclination) uncertainty. The parameters constituting the input to the
new model were generated using this theory. From this stage, however, the calculations were
carried out along different lines, as the service company uses an extended Wolff & de Wardt
type of model.

The position uncertainty was calculated for the well pictured in Figure 3. The results of the

simulations are in good agreement with each other, as shown in Table 2. The discrepancy in
.0 . A2 LA\ - .

(Amsl“ + AXis2” + Ax153“) is less than [ %. From these and similar calculations, we

conclude that the new error model is capable of analysing the uncertainty of MWD surveying
tools.
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Figure 3 Well trajectory A. The well lies entirely in the north-south vertical plane. MD 0-
300m: vertical; MD 300-900m: building from 0 to 60 deg. inclination.

Table 2 Comparison of error analysis results for a sag+mag corrected MWD tool. “Axis
1" and “Axis 27 are lengths of the main axes in the horizontal projection of the
error ellipsoid, while “Axis 3" is half of the ellipsoid’s vertical height. “Az 2" is
the azimuth orientation of “Axis 27,

Error model Axis | Axis 2 Axis 3 Az 2
Service company 6.9 m 2.1m 1.9m 0.0 deg.
New method 6.8 m 2.6 m 1.8 m 0.0 deg.

Analysis of gyro tool uncertainty

The new error propagation model has also been applied to a specific gyro tool, manufactured by
another service company. The active sensors 1n this tool are a number of accelerometers and
gyros. The tool operates in two distinct modes, depending on the well’s inclination. The
calculation of attitude uncertainty is unique for each of the modes, although with the same
sensor uncertainties as primary input.

Our analysis of the tool’s uncertainty is based on a simplified (yet still not simple) set of error
equations derived by the service company from their complete error analysis equations. The
simplified analysis is considered to yield results within £ 20 % of the complete analysis. Error
terms considered in the simplified analysis are accelerometer scale factors, intrinsic biases, and
misalignment angles, as well as gyro bias variation, scale factor, mass unbalance, and
misalignment angle. All these error terms are treated as being systematic; however, some of
them also vary with time due to the earth’s rotation.

A comparison between our results and the service company’s calculations for a particular
wellbore is listed in Table 3. The wellbore is shown schematically in Figure 4. From Table 3,

42 . 2 . 42\12 . . .
we find a discrepancy of less than 2 % in (Axml“ + Axis2” + Ax1$3’) . Simulations with

other well geometries gave similar results. These results demonstrate that the new error model
can be used to analyse the uncertainty of gyro surveying tools.
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Figure 4  Well trajectory B. The well lies entirely in the east-west vertical plane. MD 0-
800m: vertical; MD 800-1760m: building from 0 to 80 deg. inclination; MD 1760-
4000m: straight section with inclination 80 deg.

Table 3 Comparison of error analysis results for a gyro tool. The numbers are half-axis
uncertainties horizontal and perpendicular to wellbore (“Axis 1"), horizontal
projection of along-wellbore component (“Axis 2”), and vertical (“Axis 37). “Az”
is the azimuth orientation of the ellipsoid’s major axis.

Error model Axis | Axis 2 Axis 3 Az

Service company 8.6 m 1.6 m 33m 0.1 deg.

New method 8.7 m 2.0m 3.1 m 0.0 deg.
Targeting

The methodology described in this paper has been used to demonstrate the link between
borehole position accuracy and reservoir description. Figure 5 illustrates a targeting problem, as
it would appear to the driller (i.e., looking ahead in the well’s direction). The reservoir zone is
shown in perspective view, while the well’s uncertainty is represented by the ellipse in the
plane normal to the wellbore, i.e., a 2D-projection of the uncertainty ellipsoid. This is
considered to be the most informative representation, as the displacement of the well in this
plane should be of most concern to the driller.

The reservoir zone with horizontal extension 250 x 250 m is approached by a 6.5 km well, with
a nearly horizontal section of ca. 2 km. The analysis takes into account uncertainties in both
wellbore position and in geological description; however, the uncertainty in target position has
been incorporated in the survey uncertainty parameters for simplicity. Thus, the ellipse
represents the total (combined) uncertainty.

Realistic parameter values were used in the analysis. Two situations are shown: 1) A low-

accuracy geological description in combination with for example an MWD surveying tool; and
2) An improved geological accuracy (for example by geosteering, additional knowledge of fault
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locations, etc.) combined with a higher accuracy surveying instrument like a gyro tool. The
confidence level of the 2D ellipse is 95 % in both cases.

—

100 m

View along wellbore

100 m

View along wellbore L

Figure 5 Examples of uncertainty analysis for two targeting situations. Top: MWD survey
and high uncertainty in target position. Below: Gyro survey and improved
geological accuracy.

Once the combined view of reservoir zone plus wellbore uncertainty is established like in
Figure 5, the calculation of probability of hitting the target is straight-forward, although
mathematically cumbersome. However, this has not been done in the present work.

Conclusions

A new method for analysing the position accuracy of boreholes has been presented. Based on
the error being described in terms of the covariance matrix, the new method offers the
following advantages:

e Generality:

e Not operational, sensor, or tool specific.

e Systematic and random errors, as well as any intermediate degree of dependence, are
treated in a unified framework.

e Errors may be systematic on some scale and random on other scales, both within a
single well, for single or multiple surveys (repeated or tie-on), and for multi-well
surveys.

e Uncertainty parameters from any source and at any level may be used as input:
geology, surveying tool, environmental and operational effects, etc.

e Flexibility:

¢ Inherent separation of well geometry from tool uncertainty description offers a

modular approach.
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e New positioning tools, services, and error parameters can casily be incorporated.
¢ The output may be presented in any desired reference frame, and at any confidence
level.
e Efficiency:
e Different error sources with equal propagation can be handled simultaneously by
input covariance matrix summation before further calculation.
¢ Only those correlations judged relevant by the user need to be computed.

The applicability of the method has been demonstrated on several generic cases: MWD and
gyro survey analysis, and targeting. In addition, the method provides a natural and solid basis
for such tasks as well planning, geosteering, collision risk analysis, relief drilling, analysis of
tool performance, and on-site data quality control while drilling or surveying.

The method can be applied both in the planning stage, during drilling, and for analysis of
surveys in existing wells. It has the potential to meet all foreseeable requirements of the
surveying industry with respect to borehole position uncertainty analysis.
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