East-West Exclusion Zones: Why Do We Have Them and How Can We Eliminate Them?

Chad Hanak, Ph.D.

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK Wellbore Positioning Technical Section

Speaker Information

• September 22, 2016

Actionable information in seconds

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Why Exclusion Zones?

Problem With Drilling East/West

- Axial Magnetic Interference (AMI) is dominant error source (Az)
- 50% more error than Declination

Problems With the Corrections

- Multiple solutions
- Degraded accuracy

Available Corrections

- Single Station Correction (SSC)
- Multi-Station Analysis (MSA)

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

3

Exclusion Zones for Horizontal Wells

Existing Standards (SPE 125677):BGGM

- sin(Inc)*sin(Az) < 0.82
- ±35° from East/West
- IFR1
 - sin(Inc)*sin(Az) < 0.91
 - ±25° from East/West

BGGM Exclusion Zone

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

4

Single Station Correction • B_x and B_y are measured

Measured Value of (B_x, B_y)

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Single Station Correction

- B_x and B_y are measured
- B_x and B_y are modeled as a function of Az using:
 - Reference Bt
 - Reference Dip
 - Measured Inc
 - Measured TF

(B_x, B_v) as a Function of Az

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

Wellbore Positioning Technical Section

6

Single Station Correction

- B_x and B_y are measured
- B_x and B_y are modeled as a function of Az
- Minimum distance between model and measurement is found

(B_x, B_y) as a Function of Az

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore

Survey Accuracy (ISCWSA)

Single Station Correction

- B_x and B_y are measured
- B_x and B_y are modeled as a function of Az
- Minimum distance between model and measurement is found

Distance from Meas. to Model

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK Wellbore Positioning Technical Section

SCIIISP>

What to Do?

- Consider uncertainty on
 - Reference Bt
 - Reference Dip
 - Measured Inc
 - Measured TF

Multiple Minima Inside 3σ Uncertainty

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

What to Do?

- Consider uncertainty
- Map into χ^2 test
 - Reject minima w/ a probability of occurrence of < 0.1%
- If multiple minima remain, cannot trust solution

Distance as χ^2 Statistic

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

Wellbore Positioning Technical Section

SCIIISP>

10

Alternate Example

- Only 1 probabilistically plausible solution
- Ok to move forward with valid solution

Distance as χ^2 Statistic

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

Wellbore Positioning Technical Section

SCIIISP>

11

Similar to SSC

- Multiple solutions can exist
 - Not true that MSA can automatically replace SSC in an exclusion zone
 - Variation in wellbore direction can resolve
 - Required amount of variation is situationdependent

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

12

Degraded Accuracy: SSC

Correction Not as Accurate as Standard MWD IPM near East/West

- Specific IPM derived to model accuracy of correction ('+AX')
- Accounts for effects of magnetic reference field errors

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

13

Degraded Accuracy: SSC

MWD+AX IPM

No	Code	Term Description	Wt.Fn.	Wt.Fn. Source	Туре	Magnitude	Units	Prop.	P1	P2	P3	Wt.Fn. Comment
16	DECG	MWD: Declination - Global	AZ	SPE 67616	Azi Ref	0.36	deg	G	1	1	1	
17	DECR	MWD: Declination - Random	AZ	SPE 67616	Azi Ref	0.1	deg	R	0	0	0	
18	DBHG	MWD: BH-Dependent Declination - Global	DBH	SPE 67616	Azi Ref	5000	deg.nT	G	1	1	1	
19	DBHR	MWD: BH-Dependent Declination - Random	DBH	SPE 67616	Azi Ref	3000	deg.nT	R	0	0	0	
20	MDIG	MWD: Magnetic Dip with Z-Axis Corr - Global	MDI	SPE 67616 Table 1	Mgntcs	0.2	deg	G	1	1	1	
21	MDIR	MWD: Magnetic Dip with Z-Axis Corr - Random	MDI	SPE 67616 Table 1	Mgntcs	0.08	deg	R	0	0	0	
22	MFIG	MWD: Total Magnetic Field with Z-Axis Corr - Global	MFI	SPE 67616 Table 1	Mgntcs	130	nT	G	1	1	1	
23	MFIR	MWD: Total Magnetic Field with Z-Axis Corr - Random	MFI	SPE 67616 Table 1	Mgntcs	60	nT	R	0	0	0	
24	SAG	MWD: Sag	SAG	SPE 67616	Align	0.2	deg	S	1	0	0	
25	XYM1	Misalignment: XY Misalignment 1	XYM1	SPE 90408 Table 9 - Alt. 3	Align	0.1	deg	S	1	0	0	
26	XYM2	Misalignment: XY Misalignment 2	XYM2	SPE 90408 Table 9 - Alt. 3	Align	0.1	deg	S	1	0	0	
27	ХҮМЗ	Misalignment: XY Misalignment 3	ХҮМ3	SPE 90408 Table 9 - Alt. 3	Align	0.1	deg	S	1	0	0	Singularity when vertical
28	XYM4	Misalignment: XY Misalignment 4	XYM4	SPE 90408 Table 9 - Alt. 3	Align	0.1	deg	S	1	0	0	Singularity when vertical

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

14

Degraded Accuracy: MSA

More Complicated Version of SSC

- 100+ different possible parameter combinations
 - Each solution will have a different accuracy
 - Would require 100+ different IPM's to model

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

15

Degraded Accuracy: MSA

MWD+IFR1+MS IPM

No	Code	Term Description	Wt.Fn.	Wt.Fn. Source	Туре	Magnitude	Units	Prop.	P1	P2	P3	Wt.Fn. Comment
17	MSZ	MWD: Z-Magnetometer Scale Factor	MSZ	SPE 67616 Table 1	Sensor	0.0008		S	1	0	0	
18	DECG	MWD: Declination - Global	AZ	SPE 67616	Azi Ref	0.15	deg	G	1	1	1	
19	DECR	MWD: Declination - Random	AZ	SPE 67616	Azi Ref	0.1	deg	R	0	0	0	
20	DBHG	MWD: BH-Dependent Declination - Global	DBH	SPE 67616	Azi Ref	1500	deg.nT	G	1	1	1	
21	DBHR	MWD: BH-Dependent Declination - Random	DBH	SPE 67616	Azi Ref	3000	deg.nT	R	0	0	0	
22	AMIL	MWD: Axial Interference - Amin inA	MIL	Hallidarun	Mgntcs	100	nT	S	1	0	0	
23	SAG	MWD: Sag	SAG	SPE 676 5	Align	0.2	deg	S	1	0	0	
24	XYM1	Misalignment: XY Misalignment 1	XYM1	SPE 90408 Table 9 - Alt. 3	Align	0.1	deg	S	1	0	0	
25	XYM2	Misalignment: XY Misalignment 2	XYM2	SPE 90408 Table 9 - Alt. 3	Align	0.1	deg	S	1	0	0	
26	ХҮМЗ	Misalignment: XY Misalignment 3	ХҮМЗ	SPE 90408 Table 9 - Alt. 3	Align	0.1	deg	S	1	0	0	Singularity when vertical
27	XYM4	Misalignment: XY Misalignment 4	XYM4	SPE 90408 Table 9 - Alt. 3	Align	0.1	deg	S	1	0	0	Singularity when vertical

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

6

Degraded Accuracy: MSA

What Can We Do?

- '+MS' error model does not model the accuracy of MSA corrections
- No published requirements exist to check for valid use
- Best option is to calculate accuracy directly for chosen solution

Solution EOU vs. '+MS' EOU

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK Wellbore Positioning Technical Section

17

Drilling Safely East/West

If AMI corrections are required:

- Check for multiple solutions
- Ensure IPM assigned to corrected surveys does not overstate accuracy

MSA Exclusion Zone for Horizontal Wellbores: ±15°

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK Wellbore Positioning Technical Section

18

Eliminating the Exclusion Zone

- Including Part of the Build in the Lateral:
- Start lateral at 80° Inclination
 - Exclusion Zone is $\pm 5^{\circ}$
- Start lateral at 70° Inclination
 - Exclusion Zone is eliminated

MSA Exclusion Zone with Part of Build Included in Lateral

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK Wellbore Positioning Technical Section

19

Conclusion

- Axial Magnetic Interference (AMI) maps into large Azimuth errors when drilling East/West
- SSC & MSA have problems
 - Multiple solutions
 - Degraded accuracy
- Can reduce $\pm 35^{\circ}$ exclusion zone by
 - Checking probabilistic plausibility of extra solutions
 - Validating target IPM against calculated accuracy of corrections (MSA)

