

drilling SPEADC Conference Suff Skilleton

Paper No. 194057 Paper Title: Eliminating Rig Time from MWD Surveying

Ross Lowdon, M. Breen et al., Schlumberger

The Surveying Conundrum

- Geographically defines the wellbore
- Drilling safely
- Achieves geological Objectives
- Delivers engineering objectives

- Time consuming
- Increased pump cycles
- Reducing borehole quality
- Stuck pipe exposure

Measurement While Drilling — Current and Future

- MWD measurement
- 6 axis (3 accelerometers and 3 magnetometers)
- Robust reliable and auditable
- Survey taken when stationary
- Time penalty
 - 1979

- Continuous 6-axis surveying ۲
- Definitive survey taken while drilling ٠
- No "survey time" ۲
- Reduced pump cycles ۲
- Improved directional control

2019

2001

Continuous single-axis surveying Improved trajectory control Not definitive without static surveys

Continuous 6-Axis Surveys — Drilling Mode Surveys (DMS)

drilling

drilling

5

Continuous 6-Axis Surveys — Drilling Mode Survey Design Journey

Firmware

- Single correction for all errors
- Separating
 - Phase shift
 - Shock and vibration
 - Eddy current compensation

Hardware

- Improve mag frequency response
- Accelerometers already capable

Continuous 6-Axis Surveys — Field Test Results

Example 1: EXP tool, early testing

Continuous 6-Axis Surveys — Testing the Theory

Spin Rig

- Eliminate Eddy currents
- Magnetically clean environment
- 0 700RPM
- Worst case orientation
 - Attenuation 50 Incl 67 azi
 - Phase shift 67 Incl and 189 Azi

Static Survey											
		Azimuth		Inclination	Magnetic DIP	Total G	Total H				
153		153		68	66.9	1001.1	48502				
Rotating Survey											
RPM		Azimuth		Inclination	Magnetic DIP	Total G	Total H				
0		153		68	66.9	1001.1	48609				
60		153		68	66.9	1001.1	48600				
120		153.1		67.9	66.9	1001.2	48606				
180		153.2		67.9	66.9	1001.3	48633				
240		153.2		67.9	66.9	1001.3	48657				
300		153.4		67.9	66.9	1001.3	48660				
360		153.4		67.9	66.9	1001.3	48756				

Axial spin motor

D&I package (inside barrel)

Orientation stand with 3 DoF

Continuous 6-Axis Surveys — Field Test Results

Example 2: EXP tool, modified firmware + 675 hole

Paper 194057 • Eliminating Rig Time from MWD Surveying • R. Lowdon, M. Breen et al., 2019

Continuous 6-Axis Surveys — Error Modeling

Base case equivalence to MWD standard model

Term Name	Prop. Mode	Units	Magnitude	Depth Formula	Inclination Formula	Azimuth Formula
DRFR	Random	m	0.35	1	0	0
DSFS	Systematic	-	0.00056	MD	0	0
DSTG	Global	1/m	0.0000025	MD * TVD	0	0
ABZ	Systematic	m/s^2	0.004	0	$-\sin(I)/G$	$\tan(\Theta)\sin(I)\sin(A_m)/G$
ASXY-TI1S	Systematic	-	0.0005	0	$\sin(I)\cos(I)/\sqrt{2}$	$-\tan(\Theta)\sin(I)\cos(I)\sin(A_m)/\sqrt{2}$
ASZ	Systematic	-	0.0005	0	$-\sin(I)\cos(I)$	$\tan(\Theta)\sin(I)\cos(I)\sin(A_m)$
AN1	Random	m/s^2	0.0088	0	0	$(1/\tan(I) - \cos(A_m)\tan(\Theta))/G$
AN2	Random	m/s^2	0.0088	0	$-\cos(I)/G$	$\cos(I)\sin(A_m)\tan(\Theta)/G$
ANZ	Random	m/s^2	0.0044	0	$-\sin(I)/G$	$\sin(I)\sin(A_m)\tan(\Theta)/G$
AAXY	Systematic	-	0.0015	0	$\sin(I)\cos(I)$	$-\sin(I)\cos(I)\sin(A_m)\tan(\Theta)$
MBZ	Systematic	nT	70	0	0	$-\sin(I)\sin(A_m)/(B\cos(\Theta))$
MSXY	Systematic	-	0.0016	0	0	$-B_{xy}(\cos(A_m)\sin(\alpha) + \cos(I)\sin(A_m)\cos(\alpha))/(\sqrt{2}B\cos(\Theta))$
MSZ	Systematic	-	0.0016	0	0	$-(\sin(I)\cos(A_m) + \tan(\Theta)\cos(I))\sin(I)\sin(A_m)$
AMXY	Systematic	-	0.0015	0	0	$(1 - \cos^2(I))\sin(A_m)\cos(A_m) + \sin(I)\cos(I)\sin(A_m)\tan(\Theta)$
PSD	Systematic	deg	0.08	0	0	$\cos(I) - \sin(I)\cos(A_m)\tan(\Theta)$
DECG	Global	deg	0.36	0	0	1
DECR	Random	deg	0.1	0	0	1
DBHG	Global	deg∙nT	5000	0	0	$1/(B\cos(\Theta))$
DBHR	Random	deg∙nT	3000	0	0	$1/(B\cos(\Theta))$
AMIL	Systematic	nT	220	0	0	$\sin(I)\sin(A_m)/(B\cos(\Theta))$
SAG	Systematic	deg	0.2	0	sin(I)	0
EDDY	Systematic	deg	0.06	0	0	$\cos(I) - \sin(I)\cos(A_m)\tan(\Theta)$
CA1	Random	m/s^2	0.0025	0	0	$(1/\tan(I) - \cos(A_m)\tan(\Theta))/G$
CA2	Random	m/s^2	0.0025	0	$-\cos(I)/G$	$\cos(I)\sin(A_m)\tan(\Theta)/G$
DSC	Random	deg	0.08	0	1	$1/\sin(I)$
XYM1	Systematic	deg	0.04	0	$ \sin(I) $	0
XYM2	Systematic	deg	0.04	0	0	-1
XYM3	Systematic	deg	0.04	0	$ \cos(I) \cos(A_t)$	$- \cos(I) \sin(A_t)/\sin(I)$
XYM4	Systematic	deg	0.04	0	$ \cos(I) \sin(A_t)$	$ \cos(I) \cos(A_t)/\sin(I)$

Further work and Conclusions

Further work

- Improve Magnetometer bandwidth
- Eddy current compensation testing
- More field tests

Conclusions

- Zero MWD rig time a big prize
- DMS surveys very promising
- Error model developed
- Possibilities to improve on static surveys

SPE/IADC Drilling Conference and Exhibition

5 - 7 March 2019 World Forum, The Hague

Acknowledgements / Thank You / Questions