Fundamentals of Magnetic Sensor Calibration with Respect to MEMS-Based and Traditional Fluxgate MWD Sensor Systems

Chad Hanak

49th General Meeting March 8th, 2019 Den Hague, The Netherland:

Speaker Bio

Actionable Information in Seconds

- Chad Hanak
 - President, Superior QC
 - Offices and 24/7 RTOC in Houston, TX
 - Survey management (FDIR)
 - PhD in Aerospace Engineering
 - 10 years at NASA, 8 years in Oil & Gas
 - Guidance, Navigation, & Control
 - Survey Correction algorithms
 - Magnetic Ranging

MEMS vs. Fluxgate Mag Calibration, presented by Chad Hanak

Physical Theory of Operation

- MEMS Magnetometers
- Fluxgate Magnetometers
- **Pre-Calibration Accuracy Expectations**
- **Calibration Process Description**
- Sample Calibration Results
- Where ISCWSA Can Add Value

49th General Meeting March 8th, 2019 Den Hague, The Netherland

MEMS Magnetometers

MEMS vs. Fluxgate Mag Calibration, presented by Chad Hanak

Physical Theory of Operation

• For a Current Carrying Wire

Source: https://en.wikipedia.org/wiki/Lorentz_force

MEMS Magnetometers

MEMS vs. Fluxgate Mag Calibration, presented by Chad Hanak

Physical Theory of Operation

Lorentz Force

 $F = lI \times B$

Actual Measurement: Displacement

- Relative Capacitance
- LED
- Shift in Resonant Frequency

Measurement Chain

- Relative Capacitance \rightarrow Spring Displacement
- Spring Displacement & Spring Constant \rightarrow Spring Force
- Spring Force & Current Magnitude \rightarrow Mag. Field Strength
- Mag. Field Strength & Alignment \rightarrow Mag. Field Vector Component

Source: IEEE Transactions on Industrial Electronics 60(9):3983-3990 \cdot September 2013

49¤ General Meeting March 8th, 2019 Den Hague, The Netherlands

MEMS Magnetometers Capacitance Measurement Concept Visualization

MEMS vs. Fluxgate Mag Calibration, presented by Chad Hanak

Each green and red plate pair forms a capacitor

- Ideally, C1 & C2 are equal when displacement is zero
- A bias results when this is not true

Errors in multiplicative terms form scale factor errors

- Spring constant
- Current measurement

Misalignments have two sources:

- Sensor axis non-orthogonality
- Sensor triad alignment with chassis

Source: https://howtomechatronics.com/how-it-works/electrical-engineering/mems-accelerometer-gyrocope-magnetometer-arduino/ (image shows an accelerometer, not a magnetometer, but the capacitance vs. displacement concept is the same)

49th General Meeting March 8th, 2019 Den Hague, The Netherlands

MEMS vs. Fluxgate Mag Calibration, presented by Chad Hanak

Source: https://en.wikipedia.org/wiki/Magnetic_field#Magnetic_field_and_electric_currents

MEMS vs. Fluxgate Mag Calibration, presented by Chad Hanak

Physical Theory of Operation

• Core: Ferrous Magnetic Domains

Source: https://en.wikipedia.org/wiki/Magnetic domain

Randomized Magnetic Domains in the Absence of an External Magnetic Field

Saturation in the Presence of an External Magnetic Field

Source: https://en.wikipedia.org/wiki/Magnetic_domain

49th General Meeting March 8th, 2019 Den Hague, The Netherlands

MEMS vs. Fluxgate Mag Calibration, presented by Chad Hanak

Vdrive Core Physical Theory of Operation Fig. 2a: Drive Waveform Time Drive Winding & Core Together В No External Field Fig. 2b: B generated by each half core with no external field Time Drive Winding External Field H and В Fig. 2c: B generated by each half core in external field Time Vsense Untunea Fig. 2d: Tuned Voltage induced in the sense winding (black) Resultant voltage if the sensor is tuned (red) Time Source: https://www.imperial.ac.uk/space-and-atmospheric-physics/research/areas/space-magnetometerlaboratory/space-instrumentation-research/magnetometers/fluxgate-magnetometers/how-a-fluxgate-works/

MEMS vs. Fluxgate Mag Calibration, presented by Chad Hanak

Physical Theory of Operation

• Sense Winding: Faraday's Law

Sense Winding

Source: https://www.imperial.ac.uk/space-and-atmospheric-physics/research/areas/space-magnetometer-laboratory/space-instrumentation-research/magnetometers/fluxgate-magnetometers/how-a-fluxgate-works/

49th General Meeting March 8th, 2019 Den Hague, The Netherland:

MEMS vs. Fluxgate Mag Calibration, presented by Chad Hanak

Physical Theory of Operation

- Drive Winding: Biot-Savart Law
- Core: Ferrous Magnetic Domains
- Sense Winding: Faraday's Law

Measurement Chain

- Sense Winding Voltage → Spike Magnitude & Phase
- Spike Magnitude & Phase \rightarrow Mag. Field Strength
- Mag. Field Strength & Alignment \rightarrow Mag. Field Vector Component

Sense Winding

Source: https://www.imperial.ac.uk/space-and-atmospheric-physics/research/areas/space-magnetometer-laboratory/space-instrumentation-research/magnetometers/fluxgate-magnetometers/how-a-fluxgate-works/

49th General Meeting March 8th, 2019 Den Hague, The Netherland:

Sensor Bias & Scale Factor Expectations Pre-Calibration

MEMS vs. Fluxgate Mag Calibration, presented by Chad Hanak

MEMS

Expected to have larger <u>uncalibrated</u> temp. dependence, bias, & scale factor error

- Bias
- Manufacturing non-homogeneity likely to cause biases

Scale Factor Errors

- Lone measurement chain introduces many chances for error
- Temperature dependence likely on spring constant & current measurement

Fluxgate

Bias

- Internal sensor biases likely to be small (DC signal not used in signal processing)
 Scale Factor Errors
- Voltage magnitude reading subject to scale errors and temperature dependency
- Mitigated somewhat if phase of signal is also used

49th General Meeting March 8th, 2019 Den Hague, The Netherlands Calibration is used to reduce these errors.

Effects of Sensor Mounting on Alignment Pre-Calibration

MEMS vs. Fluxgate Mag Calibration, presented by Chad Hanak

MEMS

Expected to have larger <u>uncalibrated</u> temp. dependence

Can be mounted directly to circuit board

- Single axis sensors will have greater mounting non-orthogonality
- Small dimensions make accurate angular mounting difficult
- Significant board flexing could degrade calibrated alignment

Fluxgate

Usually dual axis (mounted X-Z and Y-Z)

- How are z-axes handled?
- X-Y non-orthogonality can be an issue
- Lengthier sensor lends itself to more accurate angular mounting

Same physical displacement yields large angular mounting misalignment for a shorter sensor

49th General Meeting March 8th, 2019 Den Hague, The Netherland

Sensor Calibration Process

MEMS vs. Fluxgate Mag Calibration, presented by Chad Hanak

Source: https://tolteq.com/?p=5859

https://www.nov.com/Segments/Wellbore_Technologies/ReedHycalog/Directional_Measurment_and_ Steerable_Technologies/Directional_Systems/Tolteq_iSeries_MWD_Solutions/Tolteq_Repair_and_M aintenance/Tolteq_Service_and_Support/Tolteq_Service_and_Support.aspx

Steps

- 1. Solve for coefficient table at one temperature using total field calibration or some other technique
- 2. Repeat Step 1 at multiple other temperatures to calculate temperature-based polynomials for each coefficient
- 3. Write the coefficient table to the tool and perform a verification run

49th General Meeting March 8th, 2019 Den Hague, The Netherla

Sample Calibration Results Temperature Dependence (Average per Brand)

MEMS vs. Fluxgate Mag Calibration, presented by Chad Hanak

	Bias nT/°C	Scale PPM/°C	Alignments deg/°C				
Fluxgates Magnetometers							
Brand A	0.3	225	0.0001				
Brand B	0.1	4.7	0.0001				
Brand C	0.3	6	0.0003				
Brand D	1.5	100	0.0003				
Brand E	0.6	250	0.0010				
Brand F	0.5	84	0.0002				
Brand G	0.15	7	0.0003				
Brand H	0.1	90	0.0001				
Brand I	0.5	50	0.0006				
Brand J	0.2	15	0.0002				
MEMS Magnetometers							
Brand A	450	3500	0.0040				
Brand B	4	3400	0.0014				
Brand C	1.3	10	0.0017				

* Actual calibration results

49º General Meeting March 8ih, 2019 Den Hague, The Netherlands

Temperature Tolerances Required to Keep Post-Calibration Error Below OWSG MWD 1- σ Levels

MEMS vs. Fluxgate Mag Calibration, presented by Chad Hanak

					Bias (°C)	Scale (°C)	Alignments (°C)
	Bias nT/°C	Scale PPM/°C	Alignments deg/°C		70 nT / (nT/°C)	1600 PPM / (PPM/°C)	0.1 deg / (deg/°C)
Fluxgate	s Magnetometers			Fluxgate	es Magnetometers		
Brand A	0.3	225	0.0001	Brand A	233.3	7.1	872.7
Brand B	0.1	4.7	0.0001	Brand B	700.0	340.4	872.7
Brand C	0.3	6	0.0003	Brand C	233.3	266.7	290.9
Brand D	1.5	100	0.0003	Brand D	46.7	16.0	290.9
Brand E	0.6	250	0.0010	Brand E	116.7	6.4	97.0
Brand F	0.5	84	0.0002	Brand F	140.0	19.0	436.3
Brand G	0.15	7	0.0003	Brand G	466.7	228.6	349.1
Brand H	0.1	90	0.0001	Brand H	700.0	17.8	872.7
Brand I	0.5	50	0.0006	Brand I	140.0	32.0	174.5
Brand J	0.2	15	Not us	ed for	350.0	106.7	581.8
			definiti	ve surveys			
MEMS N	lagnetometers			MEMS	Vagnetometers		
Brand A	450	3500	0.0040	Brand A	0.2	0.5	24.9
Brand B	4	3400	0.0014	Brand B	17.5	0.5	69.8
Brand C	1.3	10	0.0017	Brand C	53.8	160.0	58.2

Temp. Sensitivity

Calibration Temp. Tolerance

49^{sh} General Meeting March 8th, 2019 Den Hague, The Netherland

Sensor Calibration Impact Temp. Must Be Precisely Controlled for MEMS

MEMS vs. Fluxgate Mag Calibration, presented by Chad Hanak

Source: https://tolteq.com/?p=5859

https://www.nov.com/Segments/Wellbore_Technologies/ReedHycalog/Directional_Measurment_and_ Steerable_Technologies/Directional_Systems/Tolteq_iSeries_MWD_Solutions/Tolteq_Repair_and_M aintenance/Tolteq_Service_and_Support/Tolteq_Service_and_Support.aspx

Steps

- 1. Solve for coefficient table at one temperature using total field calibration or some other technique
- 2. Repeat Step 1 at multiple other temperatures to calculate temperature-based polynomials for each coefficient
- 3. Write the coefficient table to the tool and perform a verification run

49th General Meeting March 8th, 2019 Den Hague, The Netherla

MEMS vs. Fluxgate Mag Calibration, presented by Chad Hanak

Where the ISCWSA Can Add Value Guidance For Manufactures and MWD Companies

MEMS vs. Fluxgate Mag Calibration, presented by Chad Hanak

Error Type	ISCWSA Mnemonics	Value	Units
Accelerometer Bias	ABX, ABY, ABZ	0.004	m/s2
Accelerometer Scale Factor Error	ASX, ASY, ASZ	0.0005	
Magnetometer Bias	MBX, MBY, MBZ	70	nT
Magnetometer Scale Factor Error	MSX, MSY, MSZ	0.0016	
Misalignment of Sensor Frame wrt Tool Axis	MX, MY	0.1*	deg
Twist	(not in model)	0	deg
Bend	(not in model)	0	deg
Accelerometer Non-Orthogonality	(not in model)	0	deg
Magnetometer Non-Orthogonality	(not in model)	0	deg

* Also models misalignment of survey tool with respect to the borehole

49th General Meeting March 8th, 2019 Den Hague, The Netherlands

- MEMS magnetometers expected to have larger sensor errors than Fluxgate magnetometers pre-calibration
- Calibration should be able to make performance comparable
 - Higher temperature sensitivity may require more precise temperature control during the calibration coefficients
 - Otherwise, no significant difference anticipated in calibration procedure
 - Much of the post-calibration performance knowledge remains proprietary (hysteresis levels?)
- ISCWSA could provide better specs on misalignments for sensor manufacturers & calibration providers

