Collision Risk Analysis Pedal curve vs. Ellipse

Jon Bang
Gyrodata Ltd.

Erik Nyrnes

Statoil ASA

gyrodata

Statoil

Summary

1. Select wellbore locations

X

Not treated here (but very important!)
2. Uncertanties
Cov_{1}
Cov_{2}
From error model
3. Combine the uncertainties
a) σ_{1} and σ_{2} on individual locations
b) σ on the distance between

$$
\begin{aligned}
& \operatorname{Cov}=\operatorname{Cov}_{1}+\operatorname{Cov}_{2} \\
& \sigma^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}
\end{aligned}
$$

Same resulting formulas for a) and b)!

The Foundation

ko surfaces (in 3D) of probability density function (PDF)

Collision / Crossing Analysis: 1D Problem

NB: example
assumes k $=2.5$
extreme 2.5σ point (3D) ...

Connection between 3D, 2D, and 1D: The same k-level

Think «Inside the Box»

The Mysterious Pedal Curve

... and in 3D: Pedal Surface

The Not-So-Mysterious Pedal Curve

- Pedal curve radius \geq Ellipse radius for all directions.
- Pedal curve radius relates to probability; ellipse radius does not.

D versus $k \sigma_{D}$

NB: Normal PDF distribution assumed

Summary

1. Select wellbore locations

X

Not treated here (but very important!)

2. Uncertanties

Cov_{1}

Cov_{2}
From error model

3. Combine the uncertainties

a) σ_{1} and σ_{2} on individual locations
b) σ on the distance between

$$
\begin{aligned}
& \operatorname{Cov}=\operatorname{Cov}_{1}+\operatorname{Cov}_{2} \\
& \sigma^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}
\end{aligned}
$$

Same resulting formulas for a) and b)!

4. Interpretation of σ

Pedal point: projection from
3D (2D) onto 1D

NB: Consider only ellipse/-oid (i.e., ignore pedal point)
=> risk cannot be quantified

5. Quantification of risk

$\mathrm{SF}=\mathrm{D} / \mathrm{k} \sigma$

Criterion: SF = 1 (for given k \& given PDF)

Normal PDF assumed here; may be another PDF (heavier tales)

$\pm \mathrm{k} \sigma$ Confidence Intervals

(Normal distribution; probabilities of being inside an interval / curve / surface)

2D

$\pm 1.00 \sigma=39.35 \%$
$\pm 2.00 \sigma=86.47 \%$
$\pm 2.58 \sigma=96.41$ \%
$\pm 2.79 \sigma=97.96 \%$
$\pm 3.00 \sigma=98.89 \%$

3D

$\pm 1.00 \sigma=19.87 \%$
$\pm 2.00 \sigma=73.85 \%$
$\pm 2.58 \sigma=91.63 \%$
$\pm 2.79 \sigma=94.93 \%$
$\pm 3.00 \sigma=97.07 \%$

Why the differences?

68.27 \%

68.27 \%

$\pm \mathrm{k} \sigma$ Confidence Intervals

(Normal distribution; probabilities of being inside an interval / curve / surface)

Probability of collision/crossing is a 1D problem => never mind 2D and 3D confidence levels

The Foundation

k σ surfaces (in 3D)
of probability density

Probability of being in a certain region V
= integral of PDF*dV over V

Two Points With Uncertainty. There are Two Ellipsoids ...?

1a. Consider either the uncertainties in both locations
1b. ... or the uncertainty on the distance between the locations (co-ordinate differences). This is the «Combined Cov method» in Compass.
2. The «total» Cov and σ (along connection line) become the same for 1 a and 1 b !

$$
\begin{align*}
& \operatorname{Cov}=\operatorname{Cov}_{1}+\operatorname{Cov}_{2} \\
& \sigma^{2}=\sigma_{1}^{2}+\sigma_{2}^{2} \tag{*}
\end{align*}
$$

3. The resulting Cov matrix gives a new ellipsoid (possibly tilted from the two original ellipsoids) that comprises the total uncertainty.
4. Locate this new ellipsoid at one well position.
5. Go on with Pedal Point, etc.

If Risk Matters

NB: example designed
with nice 2:1 ratios

At k σ-level, the Pedal Point is half way to the other well X (and the ellipse point $1 / 4$). How close can the wells be, if we accept a risk of collision/crossing at ko-level?

Bring X to P.P. $(k \sigma)$
=> risk(coll./cross) = probability of being outside ko-level. => OK, just what we accept
Bring X to ellipse point $(k \sigma)$, which is the same point as P.P. ($k / 2 \sigma$)
=> risk(coll./cross) = probability of being outside k/2 σ-level. => RISK HIGHER THAN k σ

Statoil's Anti-Collision Criterion

2.1.5 Anti-collision criteria

Anti-collision calculations shall be calculated according to a Statoil approved methodology and risk level, and only Statoil approved software shall be used for such calculations.

The minimum allowed as-surveyed separation (3D borehole centre-to-centre distance) between two wells according to the requirements shall be calculated as a function of the position uncertainties and the dimensions of the actual wellbores.
The risk-based well separation rule is represented by the Separation Factor (SF) and is defined:

$$
S F=\frac{D-\frac{d_{1}+d_{2}}{2}}{2.878 \times \sigma_{D}}
$$

Where
$D=$ centre-to-centre distance (3D) between the reference and offset wells
$\sigma_{\mathrm{D}}=$ standard deviation of D
$d_{1}, d_{2}=$ wellbore diameters (casing or open-hole diameter at point of interest)

The well separation requirement is:
$S F>1$
The well separation rule shall apply to all situations where an interfering well constitutes a significant risk of serious injury, fatalities, surface pollution or serious reputation damage from any other cause.

Figurative Definition of SF by the Pedal Curve Method

The scaling factor of 2.878 gives a probability of collision or an unintended well crossing of $1 / 500$ when $\mathrm{SF}=1$

Figurative Definition of SF by the Pedal Curve Method

Relative $=\left[\begin{array}{ll}\text { pousitionn } \sigma_{A} \\ \sigma_{N} \sigma_{E} & \sigma_{E}^{2}\end{array}\right] \mathrm{P}_{1}^{\prime}=\mathrm{P}_{2}-\mathrm{P}_{1}$
Relative pos. uncertainty: $\operatorname{Cov} \Delta P=\operatorname{Cov} \mathrm{P} 1+\operatorname{Cov} \mathrm{P} 2$
39.4\% error ellipse

$1 \sigma_{\text {Distance }}=\sqrt{\left(1 \sigma_{1}\right)^{2}+\left(1 \sigma_{2}\right)^{2}}$
$1 \sigma_{\text {Distance }}=$ Pedal curve radius of the
39.4\% "combined" error ellipse

Information Needed to Calculate SF by the Pedal Curve Method

$$
\mathrm{SF}=\frac{\text { Distance }-\frac{\mathrm{d}_{1}+\mathrm{d}_{2}}{2}}{\mathrm{k} \cdot \sigma_{\text {Distance }}}
$$

- Two candidate points P_{1} and P_{2} in the reference well and the offset well
- Covariance matrices $\Sigma_{\mathrm{p}_{1}}$ and $\Sigma_{\mathrm{p}_{2}}$ of the two points
- Diameters d_{1} and d_{2} of the reference well and the offset well
- Scaling factor k to provide desired risk level
- Equation to calculate σ_{D}

NB! Be sure that the correct equation for σ_{D} is used:

$$
\sigma_{\mathrm{D}}^{2}=\frac{1}{\mathrm{D}^{2}}\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)^{\mathrm{T}}\left(\Sigma_{\mathrm{p}_{1}}+\Sigma_{\mathrm{p}_{2}}\right)\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)
$$

