Collision Risk Analysis Pedal curve vs. Ellipse

Jon Bang Gyrodata Ltd. Erik Nyrnes Statoil ASA

Version 0.1, 19.03.2015

Summary

3. Combine the uncertainties

a) σ_1 and σ_2 on individual locations b) σ on the distance between

$$Cov = Cov_1 + Cov_2$$

$$\sigma^2 = {\sigma_1}^2 + {\sigma_2}^2$$

Same resulting formulas for a) and b)!

The Foundation

Collision / Crossing Analysis: 1D Problem

Connection between 3D, 2D, and 1D: The same k-level

Think «Inside the Box»

... and in 3D: Pedal Surface

The Not-So-Mysterious Pedal Curve

- Pedal curve radius \geq Ellipse radius for all directions.
- Pedal curve radius relates to probability; ellipse radius does not.

D versus $k\sigma_{\text{D}}$

 σ_{D}

large k = large D = low risk

small k = small D = high risk

Company	k	Risk when SF = 1
	1.00	15.8 % (10/63)
	2.00	2.27 % (1/44)
	2.445	0.726 % (1/138)
Statoil	2.878	0.200 % (1/500)
	3.00	0.135 % (1/742)

NB: Normal PDF distribution assumed

<u>с</u> –	D –casing dimensions
Эг –	kσ _D

Summary

\pm k σ Confidence Intervals

(Normal distribution; probabilities of being *inside* an interval / curve / surface)

Why the differences?

 68.27 %
 68.27 %
 68.27 %

$\pm k\sigma$ Confidence Intervals

(Normal distribution; probabilities of being *inside* an interval / curve / surface)

Probability of collision/crossing is a 1D problem
=> never mind 2D and 3D confidence levels

Two Points With Uncertainty. There are Two Ellipsoids ...?

- 1a. Consider either the uncertainties in both locations
- 1b. ... or the uncertainty on the distance between the locations (co-ordinate differences). This is the «Combined Cov method» in Compass.
- 3. The resulting Cov matrix gives a new ellipsoid (possibly tilted from the two original ellipsoids) that comprises the total uncertainty.
- 4. Locate this new ellipsoid at one well position.
- 5. Go on with Pedal Point, etc.

If Risk Matters ...

At k σ -level, the Pedal Point is half way to the other well X (and the ellipse point ¼). How close can the wells be, if we accept a risk of collision/crossing at k σ -level?

Bring X to P.P.(kσ)

=> risk(coll./cross) = probability of being outside $k\sigma$ -level. => OK, just what we accept

Bring X to ellipse point $(k\sigma)$, which is the same point as P.P. $(k/2 \sigma)$

=> risk(coll./cross) = probability of being outside k/2 σ -level. => RISK HIGHER THAN k σ

Statoil's Anti-Collision Criterion

2.1.5 Anti-collision criteria

Anti-collision calculations shall be calculated according to a Statoil approved methodology and risk level, and only Statoil approved software shall be used for such calculations.

The minimum allowed as-surveyed separation (3D borehole centre-to-centre distance) between two wells according to the requirements shall be calculated as a function of the position uncertainties and the dimensions of the actual wellbores.

The risk-based well separation rule is represented by the Separation Factor (SF) and is defined:

$$SF = \frac{D - \frac{d_1 + d_2}{2}}{2.878 \times \sigma_D}$$

Where

D = centre-to-centre distance (3D) between the reference and offset wells $g_{\mathbb{R}}$ = standard deviation of D

d1, d2 = wellbore diameters (casing or open-hole diameter at point of interest)

The well separation requirement is:

SF > 1

The well separation rule shall apply to all situations where an interfering well constitutes a significant risk of serious injury, fatalities, surface pollution or serious reputation damage from any other cause.

Figurative Definition of SF by the Pedal Curve Method

The scaling factor of 2.878 gives a probability of collision or an unintended well crossing of 1/500 when SF = 1

Figurative Definition of SF by the Pedal Curve Method

Information Needed to Calculate SF by the Pedal Curve Method

- Two candidate points P₁ and P₂ in the reference well and the offset well
- Covariance matrices Σ_{p_1} and Σ_{p_2} of the two points
- Diameters d₁ and d₂ of the reference well and the offset well
- Scaling factor *k* to provide desired risk level
- Equation to calculate σ_{D}

NB! Be sure that the correct equation for σ_D is used:

$$\sigma_{\rm D}^2 = \frac{1}{{\rm D}^2} ({\rm p}_1 - {\rm p}_2)^{\rm T} ({\rm \Sigma}_{\rm p_1} + {\rm \Sigma}_{\rm p_2}) ({\rm p}_1 - {\rm p}_2)$$