A New Look at Tool Misalignment

Jon Bang, Gyrodata Inc.

40th ISCWSA meeting, 30.10.2014, Amsterdam

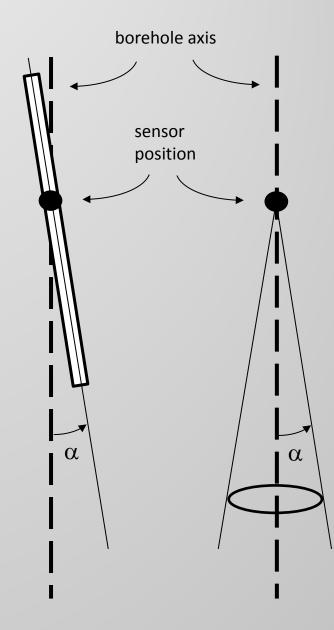
Contents

- » Background
- » New misalignment model
- » Comparison to existing models, and example calculations
- » Conclusions

» Appendix: Mathematical details

Background

- » Definition of tool misalignment α :
 - Angle between borehole axis and survey tool axis (local, at each survey station)
- » Properties:
 - In general: unknown toolface
 - Error propagation: random or systematic between stations
- » Analogous definition for sensor misalignment in tool, and misalignment between sensor axes



Background (cont.)

- **»** The importance of tool misalignment:
 - Affects all survey tools, and all survey operations
 - High relative importance in top-hole sections, i.e., typically low-inclination wellbore sections
 - Significant for long survey sections with fixed toolface (sliding tool)

Existing misalignment models

Origin	No. of inputs	Comments (+ / - indicate positive / negative properties)
Ekseth, PhD (1998)	2	Toolface dependency (-), weighting function singularity at vertical (-)
Brooks & Wilson, SPE 36863 (1996)	2	Toolface dependency (-), weighting function singularity at vertical (-)
Williamson, SPE 67616 (2000)		Adopted from Brooks & Wilson
Torkildsen et al., SPE 90408 (2008)	4	Toolface independent (+), multiple terms / alternatives (-), customised solution near vertical (singularity problem) (-)
New model	1	Direct physical foundation (+), toolface independent (+)*, valid for all directions including vertical and near vertical (+)

* Toolface used in derivation; final formulas are toolface-independent.

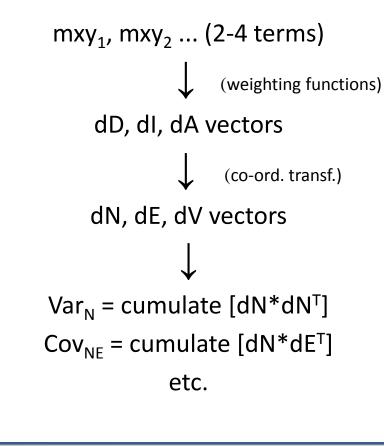
Introducing the new model

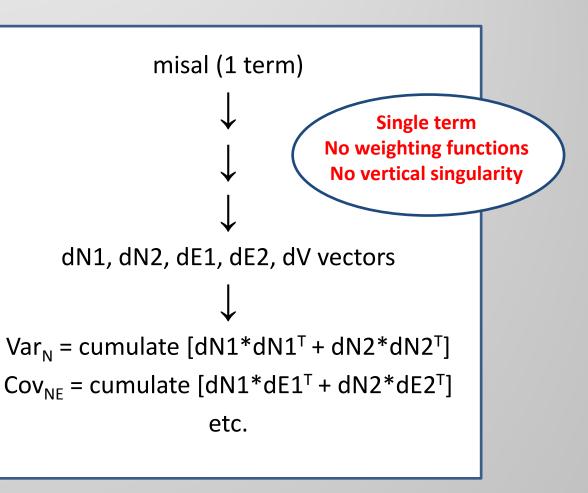
- » Analysing misalignment in the D, I, A system (like all other error terms) is tempting, but leads to:
 - One physical error source modelled by several (2-4) «sources»
 - Customized or alternative solutions near vertical
 - The «vertical singularity» problem: $\delta A/\delta \alpha \sim 1/sin(I)$
- » However, the end results are variances and co-variances in the N, E, V system:
 - Can misalignment be analysed directly in N, E, V co-ordinates?
 - And would this solve any of the problems above?

Error propagation (matrix form)

Traditional model

New model

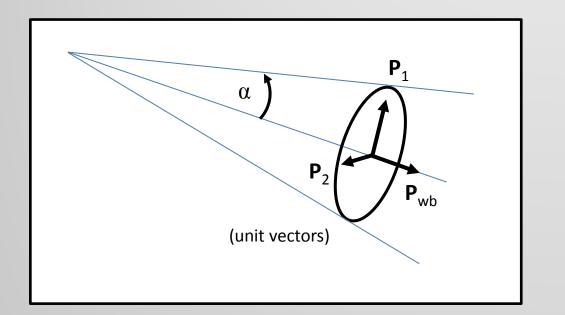




Starting point for new model

- » The position uncertainty due to misalignment α is always perpendicular to the (local) wellbore direction.
- » At each measurement, the misalignment toolface angle τ is assumed uniform on [0° ... 360°] → uncertainty «cone».
 - The toolface statistics is not related to the «random» or «systematic» nature of propagation between measurements.
- » Consequently, the approach should be:
 - 1) Describe the uncertainty in the perpendicular plane (NEV system, and one τ).
 - 2) Average over τ .

A vector basis for the perpendicular plane



Choose P_1 and P_2 as an orthonormal basis for the wellbore's perp. plane.

For example:

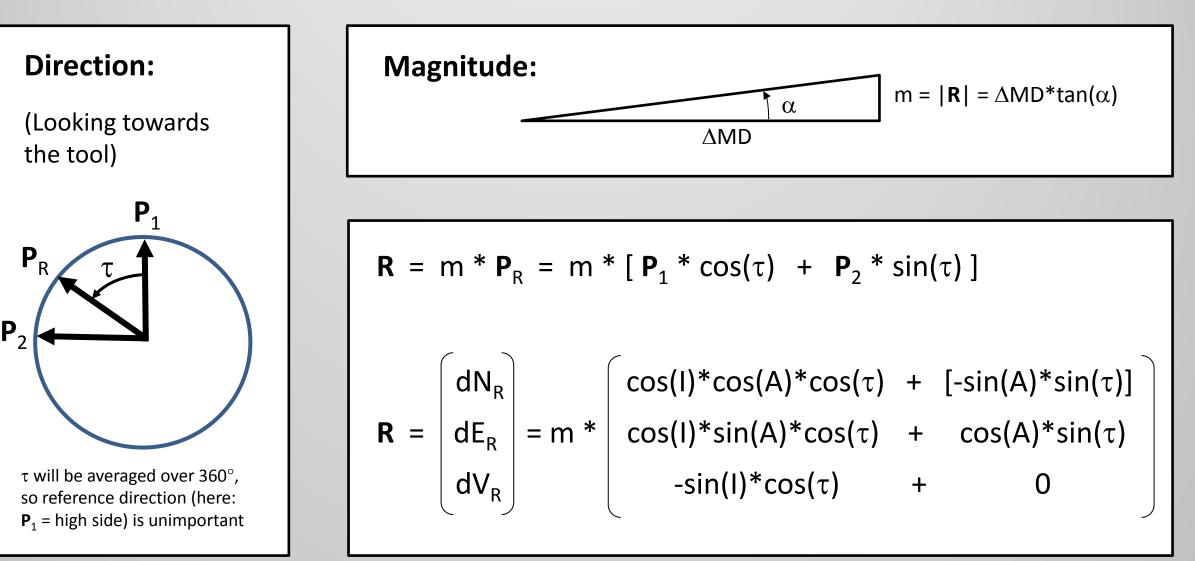
$$\mathbf{P}_1$$
 = high side = \mathbf{P}_{wb} with I \rightarrow I+($\pi/2$)

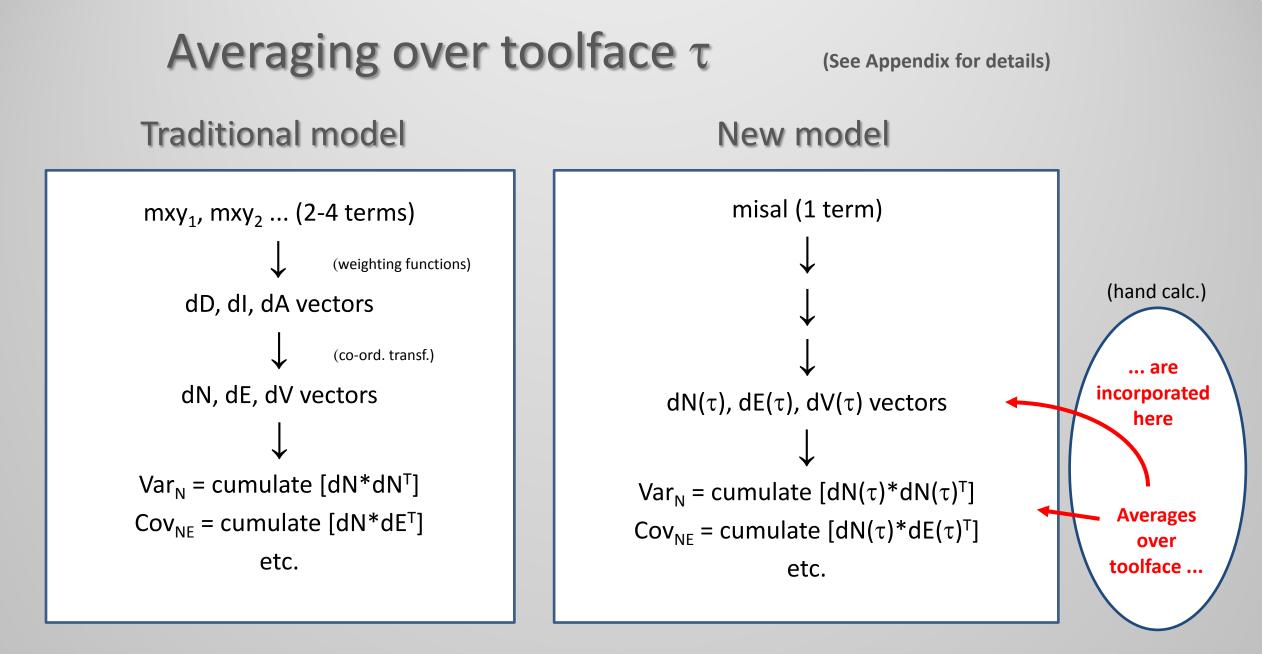
$$\mathbf{P}_2$$
 = lateral = $\mathbf{P}_{wb} \times \mathbf{P}_1$

(results hold also for I = 0)

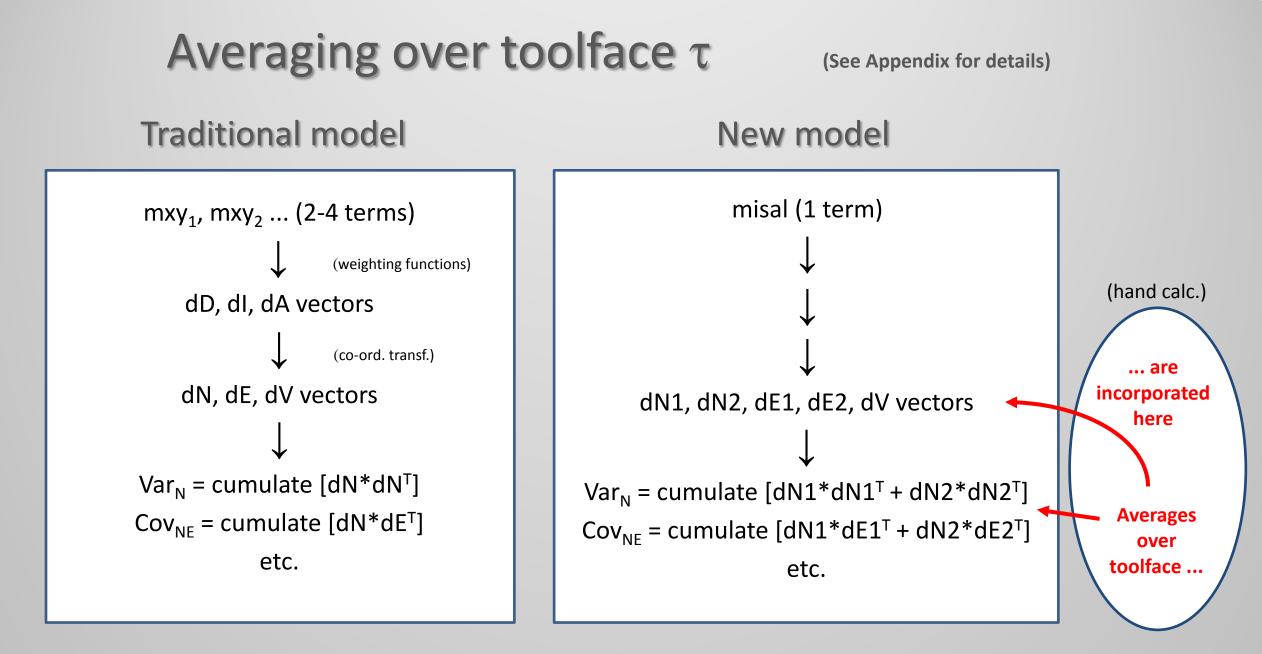
$$\mathbf{P}_{wb} = \begin{pmatrix} \sin(I)^* \cos(A) \\ \sin(I)^* \sin(A) \\ \cos(I) \end{pmatrix} \qquad \mathbf{P}_1 = \begin{pmatrix} \cos(I)^* \cos(A) \\ \cos(I)^* \sin(A) \\ -\sin(I) \end{pmatrix} \qquad \mathbf{P}_2 = \begin{pmatrix} -\sin(A) \\ \cos(A) \\ 0 \end{pmatrix}$$

Misalignment vector **R** in the perpendicular plane





Slide 11 of 18



Slide 11 of 18

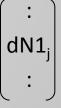
Variances and co-variances at station s (See Appendix for details)

```
Var_{N}(s) = cumul_{s} [ (dN1 * dN1^{T}) + (dN2 * dN2^{T}) ]
Var_{E}(s) = cumul_{s} [ (dE1 * dE1^{T}) + (dE2 * dE2^{T}) ]
Var_{V}(s) = cumul_{s} [ dV * dV^{T} ]
Cov_{N,E}(s) = cumul_{s} [ (dN1 * dE1^{T}) + (dN2 * dE2^{T}) ]
Cov_{N,V}(s) = cumul_{s} [ dN1 * dV^{T} ]
Cov_{E,V}(s) = cumul_{s} [ dE1 * dV^{T} ]
```

 $dN1_{j} = (m_{j}/\sqrt{2}) * \cos(I_{j}) * \cos(A_{j})$ $dN2_{j} = -(m_{j}/\sqrt{2}) * \sin(A_{j})$ $dE1_{j} = (m_{j}/\sqrt{2}) * \cos(I_{j}) * \sin(A_{j})$ $dE2_{j} = (m_{j}/\sqrt{2}) * \cos(A_{j})$ $dV_{j} = -(m_{j}/\sqrt{2}) * \sin(I_{j})$

 $\textbf{m}_{j} = \Delta \textbf{MD}_{j} \ \textbf{*} \ \textbf{tan}(\alpha_{j})$

dN1 is the column vector



«cumul_s» means cumulation of the matrix elements $dN1^*dN1^T(j,k)$ etc. over the submatrix (1..s, 1..s):

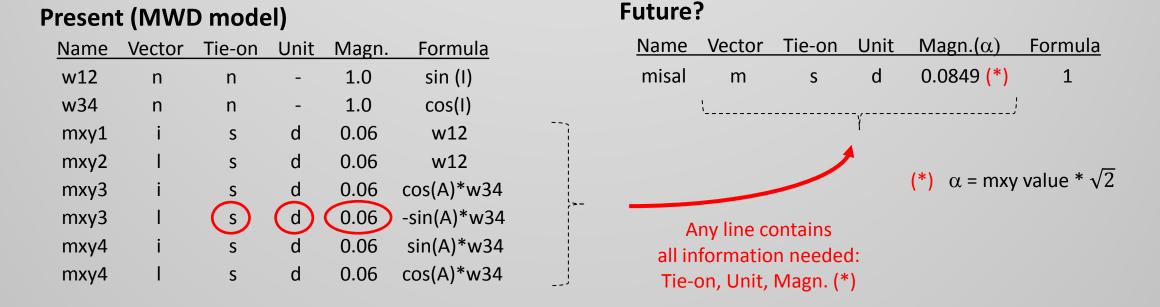
```
Rotating tool (random misalignment): cumulate diagonal (j = k) only
```

```
Sliding tool (systematic misalignment): cumulate whole submatrix (all j, k)
```

and **dN1**^T its transpose

How does this fit to existing methods?

- » Resulting formulae are consistent with SPE 90408.
- » Outputs are consistent with Compass.
- » All necessary input is given in standard ipm files:



Example results

straight wellbore; $\alpha = 0.06 \text{deg}^* \sqrt{2}$; systematic

Wellbore	dMD	l (deg)	A (deg)	Var(N)	Var(E)	Var(V)	Cov(NE)	Cov(NV)	Cov(EV)
Vertical	3000	0	0	9.8696	9.8696	0	0	0	0
Vertical	3000	0	45	9.8696	9.8696	0	0	0	0
Vertical	3000	0	90	9.8696	9.8696	0	0	0	0
Vertical	3000	0	270	9.8696	9.8696	0	0	0	0
Slant	3000	30	0	7.4022	9.8696	2.4674	0	-4.2737	0
Slant	3000	45	0	4.9348	9.8696	4.9348	0	-4.9348	0
Slant	3000	60	0	2.4674	9.8696	7.4022	0	-4.2737	0
Horizontal	3000	90	0	0	9.8696	9.8696	0	0	0
Horizontal	3000	90	45	4.9348	4.9348	9.8696	-4.9348	0	0
Horizontal	3000	90	90	9.8696	0	9.8696	0	0	0
Horizontal	3000	90	270	9.8696	0	9.8696	0	0	0

Conclusions

- » New representation of tool misalignment error $\boldsymbol{\alpha}$
 - Model based on physical origin
 - Described directly in NEV system
- » Simple, and «universally» valid
 - Single term description, toolface independent results
 - No traditional weighting functions (by-passes DIA system)
 - Valid for any inclination and azimuth angles
 - In particular: no «vertical singularity»

Conclusions (cont.)

- » Suited for error model implementation
 - Explicit equations for variances and co-variances are given
 - Uses only standard input, e.g. from ipm files (α = ipm value * $\sqrt{2}$)
- » Helps to simplify error models
 - Easier understanding and communication of error models
 - Reduced risk for wrong application and results
 - Increased confidence in position uncertainty analysis

Thanks for helpful discussions:

Roger Ekseth, John Weston, Adrián Ledroz Gyrodata Inc.

Slide 17 of 18

Thank you.

Appendix: Calculation of variances and co-variances (Mathematical details)

40th ISCWSA meeting, 30.10.2014, Amsterdam

Summary

In the new model, NEV contributions are initially described as toolface-dependent (see expression for R, slide 10).

The toolface is eliminated from Var/Cov formulae by ensemble averaging (by hand). The results show how R can be modified.

=> Toolface-independent N1, N2, E1, E2, V + reformulation of Var and Cov.

The resulting formulae are implemented on computer.

=> Standard procedure for error propagation.

Error propagation (τ-dependent term)

Step 1: Calculate dN_R , dE_R , dV_R contributions along the wellbore

- Step 2: Form variances/co-variances contributions at each station
- Step 3: Average over (unknown) toolface τ

- Step 4: Cumulate per-station contributions, according to randomor systematic nature of propagation of misalignment
- Step 5: Sum variances/co-variances to contributions from other error terms

by hand

computer

Step 2: Variances/co-variances at station s: $\Sigma_{j=1}^{s} dN_{R}(\tau_{j}) * \Sigma_{k=1}^{s} dN_{R}(\tau_{k})$ etc. for N*E, ...

Step 3: Average over toolface:

- Cross-terms in dN*dN etc. form a matrix where each element (j,k) contains a product of cos(τ_i) or sin(τ_i) with cos(τ_k) or sin(τ_k).
- Since τ is unknown, the best estimate is the statistical mean, found by ensemble averaging over $\tau = 0^{\circ}...360^{\circ}$.

Ensemble averages E{...} of cross product terms, over toolface τ :

Product terms	Rand (= rotati		Systematic $ au$ (= sliding tool)		
	j = k	$j \neq k$	j = k	$j \neq k$	
$E\{cos(\tau_j) * cos(\tau_k)\}$	1/2	0	1/2	1/2	
$E\{cos(\tau_j) * sin(\tau_k)\}$	0	0	0	0	
$E\{\sin(\tau_j) * \cos(\tau_k)\}$	0	0	0	0	
$E\{\sin(\tau_j) * \sin(\tau_k)\}$	1/2	0	1/2	1/2	

Observation 1:

Only [cos*cos] or [sin*sin] terms contribute, each by 1/2.

=> Discard product terms that contribute 0. For the remaining products: use original R vector terms with $cos(\tau)$ and $sin(\tau)$ replaced by $1/\sqrt{2}$.

Observation 2:

For random τ (rotating tool), only matrix diagonal elements (j=k) contribute. For systematic τ (sliding tool), the whole matrix (all j, k) contribute.

=> Random or systematic propagation (step 4) is handled when summing matrix elements.

Resulting formulae on summation form

$$\begin{aligned} & \text{Var}_{N}(s) = \Sigma_{k=1}^{s} \Sigma_{j=1}^{s} \left[(dN1_{j} * dN1_{k}) + (dN2_{j} * dN2_{k}) \right] \\ & \text{Var}_{E}(s) = \Sigma_{k=1}^{s} \Sigma_{j=1}^{s} \left[(dE1_{j} * dE1_{k}) + (dE2_{j} * dE2_{k}) \right] \\ & \text{Var}_{V}(s) = \Sigma_{k=1}^{s} \Sigma_{j=1}^{s} \left[dV_{j} * dV_{k} \right] \\ & \text{Cov}_{N,E}(s) = \Sigma_{k=1}^{s} \Sigma_{j=1}^{s} \left[(dN1_{j} * dE1_{k}) + (dN2_{j} * dE2_{k}) \right] \\ & \text{Cov}_{N,V}(s) = \Sigma_{k=1}^{s} \Sigma_{j=1}^{s} \left[dN1_{j} * dV_{k} \right] \end{aligned}$$

s is the station number

 $dN1_{j} = (m_{j}/\sqrt{2}) * \cos(I_{j}) * \cos(A_{j})$ $dN2_{j} = -(m_{j}/\sqrt{2}) * \sin(A_{j})$ $dE1_{j} = (m_{j}/\sqrt{2}) * \cos(I_{j}) * \sin(A_{j})$ $dE2_{j} = (m_{j}/\sqrt{2}) * \cos(A_{j})$ $dV_{j} = -(m_{j}/\sqrt{2}) * \sin(I_{j})$

 $m_j = \Delta MD_j * tan(\alpha_j)$

Rotating tool (random misalignment): include j = k terms only Sliding tool (systematic misalignment): include all j, k terms

Resulting formulae on matrix form

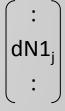
```
Var_{N}(s) = cumul_{s} [ (dN1 * dN1^{T}) + (dN2 * dN2^{T}) ]
Var_{E}(s) = cumul_{s} [ (dE1 * dE1^{T}) + (dE2 * dE2^{T}) ]
Var_{V}(s) = cumul_{s} [ dV * dV^{T} ]
Cov_{N,E}(s) = cumul_{s} [ (dN1 * dE1^{T}) + (dN2 * dE2^{T}) ]
Cov_{N,V}(s) = cumul_{s} [ dN1 * dV^{T} ]
Cov_{E,V}(s) = cumul_{s} [ dE1 * dV^{T} ]
```

«cumul_s» means: cumulation of the matrix elements $dN1^*dN1^T(j,k)$ etc. over the submatrix (1..s, 1..s):

```
Rotating tool (random misalignment): cumulate diagonal (j = k) only
Sliding tool (systematic misalignment): cumulate whole submatrix (all j, k)
```

s is the station number

dN1 is the column vector



and $\textbf{dN1}^{\mathsf{T}}$ its transpose

 $dN1_{j} = (m_{j}/\sqrt{2}) * \cos(I_{j}) * \cos(A_{j})$ $dN2_{j} = -(m_{j}/\sqrt{2}) * \sin(A_{j})$ $dE1_{j} = (m_{j}/\sqrt{2}) * \cos(I_{j}) * \sin(A_{j})$ $dE2_{j} = (m_{j}/\sqrt{2}) * \cos(A_{j})$ $dV_{j} = -(m_{j}/\sqrt{2}) * \sin(I_{j})$ $m_{i} = \Delta MD_{i} * \tan(\alpha_{i})$