A New Look at Tool Misalignment

Jon Bang, Gyrodata Inc.

40th ISCWSA meeting, 30.10.2014, Amsterdam

Contents

» Background
» New misalignment model
» Comparison to existing models, and example calculations
» Conclusions
" Appendix: Mathematical details

Background

" Definition of tool misalignment α :

- Angle between borehole axis and survey tool axis (local, at each survey station)
» Properties:
- In general: unknown toolface
- Error propagation: random or systematic between stations
» Analogous definition for sensor misalignment in tool, and misalignment between sensor axes
borehole axis

Background (cont.)

» The importance of tool misalignment:

- Affects all survey tools, and all survey operations
- High relative importance in top-hole sections, i.e., typically low-inclination wellbore sections
- Significant for long survey sections with fixed toolface (sliding tool)

Existing misalignment models

Origin	No. of inputs	Comments (+ / - indicate positive / negative properties)
Ekseth, PhD (1998)	2	Toolface dependency (-), weighting function singularity at vertical (-)
Brooks \& Wilson, SPE 36863 (1996)	2	Toolface dependency (-), weighting function singularity at vertical (-)
Williamson, SPE 67616 (2000)		Adopted from Brooks \& Wilson
Torkildsen et al., SPE 90408 (2008)	4	Toolface independent (+), multiple terms / alternatives (-), customised solution near vertical (singularity problem) (-)
New model	1	Direct physical foundation (+), toolface independent (+)*, valid for all directions including vertical and near vertical (+)

Introducing the new model

" Analysing misalignment in the D, I, A system (like all other error terms) is tempting, but leads to:

- One physical error source modelled by several (2-4) «sources»
- Customized or alternative solutions near vertical
- The «vertical singularity» problem: $\delta A / \delta \alpha \sim 1 / \sin (I)$
» However, the end results are variances and co-variances in the N, E, V system:
- Can misalignment be analysed directly in N, E, V co-ordinates?
- And would this solve any of the problems above?

Error propagation (matrix form)

Traditional model

\downarrow (co-ord. transf.)
$d N, d E, d V$ vectors
\downarrow
$\operatorname{Var}_{\mathrm{N}}=$ cumulate $\left[\mathrm{dN}^{*} \mathrm{dN}^{\top}\right]$
$\operatorname{Cov}_{\mathrm{NE}}=$ cumulate $\left[\mathrm{dN} \mathrm{NE}^{\top}\right.$]
etc.

New model

Starting point for new model

" The position uncertainty due to misalignment α is always perpendicular to the (local) wellbore direction.
» At each measurement, the misalignment toolface angle τ is assumed uniform on $\left[0^{\circ} \ldots 360^{\circ}\right] \rightarrow$ uncertainty «cone».

- The toolface statistics is not related to the «random» or «systematic» nature of propagation between measurements.
» Consequently, the approach should be:

1) Describe the uncertainty in the perpendicular plane (NEV system, and one τ).
2) Average over τ.

A vector basis for the perpendicular plane

Choose \mathbf{P}_{1} and \mathbf{P}_{2} as an orthonormal basis for the wellbore's perp. plane.

For example:
$\mathbf{P}_{1}=$ high side $=\mathbf{P}_{\mathrm{wb}}$ with I $\rightarrow \mathrm{I}+(\pi / 2)$
$\mathbf{P}_{2}=$ lateral $=\mathbf{P}_{\mathrm{wb}} \times \mathbf{P}_{1}$
(results hold also for $\mathrm{I}=0$)

$$
\mathbf{P}_{\mathrm{wb}}=\left(\begin{array}{c}
\sin (\mathrm{I})^{*} \cos (\mathrm{~A}) \\
\sin (\mathrm{I})^{*} \sin (\mathrm{~A}) \\
\cos (\mathrm{I})
\end{array}\right) \quad \mathbf{P}_{1}=\left(\begin{array}{c}
\cos \left(\mathrm{I}()^{*} \cos (\mathrm{~A})\right. \\
\cos (\mathrm{I}) * \sin (\mathrm{~A}) \\
-\sin (\mathrm{I})
\end{array}\right) \quad \mathbf{P}_{2}=\left(\begin{array}{c}
-\sin (\mathrm{A}) \\
\cos (\mathrm{A}) \\
0
\end{array}\right)
$$

Misalignment vector \mathbf{R} in the perpendicular plane

Direction:

(Looking towards

Magnitude:

$$
\mathrm{m}=|\mathbf{R}|=\Delta \mathrm{MD}^{*} \tan (\alpha)
$$

the tool)

$$
\mathbf{R}=\mathrm{m} * \mathbf{P}_{\mathrm{R}}=\mathrm{m} *\left[\mathbf{P}_{1} * \cos (\tau)+\mathbf{P}_{2} * \sin (\tau)\right]
$$

$\mathbf{R}=\left(\begin{array}{l}d N_{R} \\ d E_{R} \\ d V_{R}\end{array}\right)=m *\left(\begin{array}{ccc}\cos (1)^{*} \cos (\mathrm{~A})^{*} \cos (\tau) & + & {\left[-\sin (\mathrm{A})^{*} \sin (\tau)\right]} \\ \cos (1)^{*} \sin (\mathrm{~A})^{*} \cos (\tau) & + & \cos (\mathrm{A})^{*} \sin (\tau) \\ -\sin (1)^{*} \cos (\tau) & + & 0\end{array}\right)$

Averaging over toolface τ

Traditional model

$\mathrm{mxy}_{1}, \mathrm{mxy}_{2} \ldots$ (2-4 terms)
\downarrow (weighting functions)
$\mathrm{dD}, \mathrm{dl}, \mathrm{dA}$ vectors
\downarrow (co-ord. transf.)
$d N, d E, d V$ vectors
\downarrow
$\operatorname{Var}_{\mathrm{N}}=$ cumulate $\left[\mathrm{dN}^{*} \mathrm{dN}^{\top}\right]$
$\operatorname{Cov}_{\mathrm{NE}}=$ cumulate $\left[\mathrm{dN}^{*} \mathrm{dE}^{\top}\right]$
etc.

New model

Averaging over toolface τ

Traditional model

$\operatorname{Var}_{\mathrm{N}}=$ cumulate $\left[\mathrm{dN}^{*} \mathrm{dN}^{\top}\right]$
$\operatorname{Cov}_{\mathrm{NE}}=$ cumulate $\left[\mathrm{dN}^{*} \mathrm{dE}^{\top}\right]$
etc.

New model

Variances and co-variances at station s

$$
\begin{aligned}
& \operatorname{Var}_{\mathrm{N}}(\mathrm{~s})=\text { cumul }_{\mathrm{s}}\left[\left(\mathbf{d N 1} \mathbf{*}^{*} \mathbf{d N 1}{ }^{\mathrm{T}}\right)+\left(\mathbf{d N 2} \mathbf{*}^{\mathbf{d}} \mathbf{N 2}^{\mathrm{T}}\right)\right] \\
& \operatorname{Var}_{\mathrm{E}}(\mathrm{~s})=\text { cumul }_{\mathrm{s}}\left[\left(\mathbf{d E 1} \mathbf{* d E 1}^{\top}\right)+\left(\mathbf{d E 2} \mathbf{* d E 2}^{\top}\right)\right] \\
& \operatorname{Var}_{\mathrm{V}}(\mathrm{~s})=\text { cumul }_{\mathrm{s}}\left[\mathbf{d V} \mathbf{N D V}^{\top}\right] \\
& \operatorname{Cov}_{\mathrm{N}, \mathrm{E}}(\mathrm{~s})=\mathrm{cumul}_{\mathrm{s}}\left[\left(\mathbf{d N 1}{ }^{*} \mathbf{d E 1}{ }^{\mathrm{T}}\right)+\left(\mathbf{d N 2}{ }^{*} \mathbf{d E 2}^{\top}\right)\right] \\
& \operatorname{Cov}_{\mathrm{N}, \mathrm{~V}}(\mathrm{~s})=\mathrm{cumul}_{\mathrm{s}}\left[\mathbf{d N 1} \mathbf{N}^{*} \mathbf{d V}^{\boldsymbol{\top}}\right] \\
& \operatorname{Cov}_{\mathrm{E}, \mathrm{~V}}(\mathrm{~s})=\mathrm{cumul}_{\mathrm{s}}\left[\mathbf{d E 1}{ }^{*} \mathbf{d V}^{\top}\right]
\end{aligned}
$$

«cumuls» means cumulation of the matrix elements $\mathbf{d N} \mathbf{1}^{*} \mathbf{d N 1}^{\top}(\mathrm{j}, \mathrm{k})$ etc. over the submatrix (1..s, 1..s):

Rotating tool (random misalignment): cumulate diagonal ($\mathrm{j}=\mathrm{k}$) only Sliding tool (systematic misalignment): cumulate whole submatrix (all j, k)

$$
\begin{aligned}
& \mathrm{dN} 1_{\mathrm{j}}=\left(\mathrm{m}_{\mathrm{j}} / \sqrt{2}\right) * \cos \left(\mathrm{l}_{\mathrm{j}}\right) * \cos \left(\mathrm{~A}_{\mathrm{j}}\right) \\
& \mathrm{dN} 2_{\mathrm{j}}=-\left(\mathrm{m}_{\mathrm{j}} / \sqrt{2}\right) * \sin \left(\mathrm{~A}_{\mathrm{j}}\right) \\
& \mathrm{dE} 1_{\mathrm{j}}=\left(\mathrm{m}_{\mathrm{j}} / \sqrt{2}\right) * \cos \left(\mathrm{l}_{\mathrm{j}}\right) * \sin \left(\mathrm{~A}_{\mathrm{j}}\right) \\
& \mathrm{dE} 2_{\mathrm{j}}=\left(\mathrm{m}_{\mathrm{j}} / \sqrt{2}\right) * \cos \left(\mathrm{~A}_{\mathrm{j}}\right) \\
& \mathrm{dV}=-\left(\mathrm{m}_{\mathrm{j}} / \sqrt{2}\right) * \sin \left(\mathrm{l}_{\mathrm{j}}\right) \\
& \mathrm{m}_{\mathrm{j}}=\Delta \mathrm{MD}_{\mathrm{j}} * \tan \left(\alpha_{\mathrm{j}}\right)
\end{aligned}
$$

$\mathbf{d N} \mathbf{1}$ is the column vector $\left[\begin{array}{c}: \\ \mathrm{dN} 1_{\mathrm{j}} \\ :\end{array}\right]$ and $\mathbf{d N 1} \mathbf{1}^{\top}$ its transpose

How does this fit to existing methods?

» Resulting formulae are consistent with SPE 90408.
» Outputs are consistent with Compass.
» All necessary input is given in standard ipm files:

Present (MWD model)

Name	Vector	Tie-on	Unit	Magn.	Formula
w 12	n	n	-	1.0	$\sin (\mathrm{I})$
w 34	n	n	-	1.0	$\cos (\mathrm{I})$
mxy1	i	s	d	0.06	w 12
mxy2	I	s	d	0.06	w 12
mxy3	i	s	d	0.06	$\cos (\mathrm{~A})^{*} \mathrm{w} 34$
mxy3	I	s	d	0.06	$-\sin (\mathrm{A})^{*} \mathrm{w} 34$
mxy4	i	s	d	0.06	$\sin (\mathrm{~A})^{*} \mathrm{w} 34$
mxy4	I	s	d	0.06	$\cos (\mathrm{~A})^{*} \mathrm{w} 34$

Future?

Name	Vector	Tie-on	Unit	Magn. (α)	Formula
misal	m	s	d	$0.0849\left(^{*}\right)$	1

$\left.{ }^{*}\right) \quad \alpha=m x y$ value $* \sqrt{2}$

Any line contains

all information needed:
Tie-on, Unit, Magn. (*)

Example results

straight wellbore; $\alpha=0.06 \mathrm{deg}^{*} \sqrt{2} ; \quad$ systematic

Wellbore	dMD	1 (deg)	A (deg)	Var(N)	Var(E)	Var(V)	Cov(NE)	Cov(NV)	Cov(EV)
Vertical	3000	0	0	9.8696	9.8696	0	0	0	0
Vertical	3000	0	45	9.8696	9.8696	0	0	0	0
Vertical	3000	0	90	9.8696	9.8696	0	0	0	0
Vertical	3000	0	270	9.8696	9.8696	0	0	0	0
Slant	3000	30	0	7.4022	9.8696	2.4674	0	-4.2737	0
Slant	3000	45	0	4.9348	9.8696	4.9348	0	-4.9348	0
Slant	3000	60	0	2.4674	9.8696	7.4022	0	-4.2737	0
Horizontal	3000	90	0	0	9.8696	9.8696	0	0	0
Horizontal	3000	90	45	4.9348	4.9348	9.8696	-4.9348	0	0
Horizontal	3000	90	90	9.8696	0	9.8696	0	0	0
Horizontal	3000	90	270	9.8696	0	9.8696	0	0	0

Conclusions

» New representation of tool misalignment error α

- Model based on physical origin
- Described directly in NEV system
» Simple, and «universally» valid
- Single term description, toolface independent results
- No traditional weighting functions (by-passes DIA system)
- Valid for any inclination and azimuth angles
- In particular: no «vertical singularity»

Conclusions (cont.)

» Suited for error model implementation

- Explicit equations for variances and co-variances are given
- Uses only standard input, e.g. from ipm files ($\alpha=\mathrm{ipm}$ value $* \sqrt{2}$)
» Helps to simplify error models
- Easier understanding and communication of error models
- Reduced risk for wrong application and results
- Increased confidence in position uncertainty analysis

Thanks for helpful discussions:

Roger Ekseth, John Weston, Adrián Ledroz
Gyrodata Inc.

Thank you.

Appendix:
 Calculation of variances and co-variances (Mathematical details)

Summary

In the new model, NEV contributions are initially described as toolface-dependent (see expression for R, slide 10).

The toolface is eliminated from Var/Cov formulae by ensemble averaging (by hand). The results show how R can be modified.
=> Toolface-independent N1, N2, E1, E2, V + reformulation of Var and Cov.

The resulting formulae are implemented on computer. => Standard procedure for error propagation.

Error propagation (τ-dependent term)

Step 1: Calculate $\mathrm{dN}_{\mathrm{R}}, \mathrm{dE}_{\mathrm{R}}, \mathrm{dV}_{\mathrm{R}}$ contributions along the wellbore
Step 2: Form variances/co-variances contributions at each station
Step 3: Average over (unknown) toolface τ

Step 4: Cumulate per-station contributions, according to random or systematic nature of propagation of misalignment

Step 5: Sum variances/co-variances to contributions from other error terms

Step 1: $d N_{R}, d E_{R}, d V_{R}$ contributions cumulated down to station s: $\Sigma^{s}{ }_{j=1} d N_{R}\left(\tau_{j}\right) \quad$ etc. for E, V

Step 2: Variances/co-variances at station s:

$$
\sum_{\mathrm{j}=1}^{\mathrm{s}} \mathrm{dN} \mathrm{~N}_{\mathrm{R}}\left(\tau_{\mathrm{j}}\right) * \sum_{\mathrm{k}=1}^{\mathrm{s}} \mathrm{dN}_{\mathrm{R}}\left(\tau_{\mathrm{k}}\right)
$$

etc. for $N^{*} E, \ldots$

Step 3: Average over toolface:

- Cross-terms in $\mathrm{dN}^{*} \mathrm{dN}$ etc. form a matrix where each element (j, k) contains a product of $\cos \left(\tau_{j}\right)$ or $\sin \left(\tau_{j}\right)$ with $\cos \left(\tau_{k}\right) \operatorname{or} \sin \left(\tau_{k}\right)$.
- Since τ is unknown, the best estimate is the statistical mean, found by ensemble averaging over $\tau=0^{\circ} \ldots 360^{\circ}$.

Ensemble averages $\mathrm{E}\{\ldots\}$ of cross product terms, over toolface τ :

Product terms	Random τ $(=$ rotating tool)	Systematic τ (= sliding tool)		
$E\left\{\cos \left(\tau_{j}\right) * \cos \left(\tau_{k}\right)\right\}$	$1 / 2$	0	$1 / 2$	$1 / 2$
$E\left\{\cos \left(\tau_{j}\right) * \sin \left(\tau_{k}\right)\right\}$	0	0	0	0
$E\left\{\sin \left(\tau_{j}\right) * \cos \left(\tau_{k}\right)\right\}$	0	0	0	0
$E\left\{\sin \left(\tau_{j}\right) * \sin \left(\tau_{k}\right)\right\}$	$1 / 2$	0	$1 / 2$	$1 / 2$

Observation 1:

Only [cos* \cos] or [sin*sin] terms contribute, each by $1 / 2$.
=> Discard product terms that contribute 0 . For the remaining products: use original R vector terms with $\cos (\tau)$ and $\sin (\tau)$ replaced by $1 / \sqrt{2}$.

Observation 2:

For random τ (rotating tool), only matrix diagonal elements ($\mathrm{j}=\mathrm{k}$) contribute.
For systematic τ (sliding tool), the whole matrix (all j, k) contribute.
=> Random or systematic propagation (step 4) is handled when summing matrix elements.

Resulting formulae on summation form

$\operatorname{Var}_{\mathrm{N}}(\mathrm{s})=\sum_{\mathrm{k}=1}^{\mathrm{s}} \sum^{\mathrm{s}}{ }_{\mathrm{j}=1}\left[\left(\mathrm{dN} 1_{\mathrm{j}} * \mathrm{dN1} 1_{\mathrm{k}}\right)+\left(\mathrm{dN} 2_{\mathrm{j}} * \mathrm{dN} 2_{\mathrm{k}}\right)\right]$
$\operatorname{Var}_{\mathrm{E}}(\mathrm{s})=\sum_{\mathrm{k}=1}^{\mathrm{s}} \sum_{\mathrm{j}=1}^{\mathrm{s}}\left[\left(\mathrm{dE1}_{\mathrm{j}} * \mathrm{dE1}_{\mathrm{k}}\right)+\left(\mathrm{dE2}{ }_{\mathrm{j}}{ }^{*} \mathrm{dE2} 2_{\mathrm{k}}\right)\right]$
$\operatorname{Var}_{\mathrm{v}}(\mathrm{s})=\sum_{\mathrm{k}=1}^{\mathrm{s}} \Sigma_{\mathrm{j}=1}^{\mathrm{s}}\left[\mathrm{dV} \mathrm{V}_{\mathrm{j}} * \mathrm{dV} \mathrm{V}_{\mathrm{k}}\right]$
$\operatorname{Cov}_{N, E}(\mathrm{~s})=\sum_{\mathrm{k}=1}^{\mathrm{s}} \Sigma_{\mathrm{j}=1}^{\mathrm{s}}\left[\left(\mathrm{dN1} 1_{\mathrm{j}}{ }^{*} \mathrm{dE1} 1_{\mathrm{k}}\right)+\left(\mathrm{dN} 2_{\mathrm{j}}{ }^{*} \mathrm{dE} 2_{\mathrm{k}}\right)\right]$
$\operatorname{Cov}_{\mathrm{N}, \mathrm{V}}(\mathrm{s})=\sum_{\mathrm{k}=1}^{\mathrm{s}} \sum_{\mathrm{j}=1}^{\mathrm{s}}\left[\mathrm{dN} 1_{\mathrm{j}} * \mathrm{dV}_{\mathrm{k}}\right]$
$\operatorname{Cov}_{\mathrm{E}, \mathrm{V}}(\mathrm{s})=\Sigma_{\mathrm{k}=1}^{\mathrm{s}} \Sigma_{\mathrm{j}=1}^{\mathrm{s}}\left[\mathrm{dE} 1_{\mathrm{j}}{ }^{*} \mathrm{dV} V_{\mathrm{k}}\right]$
s is the station number

$$
\begin{aligned}
& d N 1_{\mathrm{j}}=\left(\mathrm{m}_{\mathrm{j}} / \sqrt{2}\right) * \cos \left(\mathrm{l}_{\mathrm{j}}\right) * \cos \left(\mathrm{~A}_{\mathrm{j}}\right) \\
& \mathrm{dN} 2_{\mathrm{j}}=-\left(\mathrm{m}_{\mathrm{j}} / \sqrt{2}\right) * \sin \left(\mathrm{~A}_{\mathrm{j}}\right) \\
& \mathrm{dE} 1_{\mathrm{j}}=\left(\mathrm{m}_{\mathrm{j}} / \sqrt{2}\right) * \cos \left(\mathrm{l}_{\mathrm{j}}\right) * \sin \left(\mathrm{~A}_{\mathrm{j}}\right) \\
& \mathrm{dE} 2_{\mathrm{j}}=\left(\mathrm{m}_{\mathrm{j}} / \sqrt{2}\right) * \cos \left(\mathrm{~A}_{\mathrm{j}}\right) \\
& \mathrm{dV}=-\left(\mathrm{m}_{\mathrm{j}} / \sqrt{2}\right) * \sin \left(\mathrm{l}_{\mathrm{j}}\right) \\
& \mathrm{m}_{\mathrm{j}}=\Delta \mathrm{MD}_{\mathrm{j}} * \tan \left(\alpha_{\mathrm{j}}\right)
\end{aligned}
$$

Rotating tool (random misalignment): include $j=k$ terms only Sliding tool (systematic misalignment): include all j, k terms

Resulting formulae on matrix form

$$
\begin{aligned}
& \operatorname{Var}_{\mathrm{N}}(\mathrm{~s})=\text { cumul }_{\mathrm{s}}\left[\left(\mathbf{d N 1}{ }^{*} \mathbf{d N 1} \mathbf{N}^{\mathrm{T}}\right)+\left(\mathbf{d N 2} \mathbf{N}^{\mathbf{d}} \mathbf{N 2}^{\mathrm{T}}\right)\right] \\
& \operatorname{Var}_{\mathrm{E}}(\mathrm{~s})=\text { cumul }_{\mathrm{s}}\left[\left(\mathbf{d E 1} \mathbf{* d E 1}^{\top}\right)+\left(\mathbf{d E 2} \mathbf{* d E 2}^{\top}\right)\right] \\
& \operatorname{Var}_{\mathrm{V}}(\mathrm{~s})=\text { cumul }_{\mathrm{s}}\left[\mathbf{d V}{ }^{*} \mathbf{d V}^{\top}\right] \\
& \operatorname{Cov}_{\mathrm{N}, \mathrm{E}}(\mathrm{~s})=\mathrm{cumul}_{\mathrm{s}}\left[\left(\mathbf{d N 1}{ }^{*} \mathbf{d E 1}{ }^{\mathrm{T}}\right)+\left(\mathbf{d N 2}{ }^{*} \mathbf{d E 2}^{\top}\right)\right] \\
& \operatorname{Cov}_{N, V}(s)=\text { cumul }_{s}\left[\mathbf{d N 1}{ }^{*} \mathbf{d V}^{\top}\right] \\
& \operatorname{Cov}_{\mathrm{E}, \mathrm{~V}}(\mathrm{~s})=\mathrm{cumul}_{\mathrm{s}}\left[\mathbf{d E 1}{ }^{*} \mathbf{d V}^{\top}\right]
\end{aligned}
$$

«cumuls" means: cumulation of the matrix elements $\mathbf{d N 1} \mathbf{N d N 1}^{\top}(\mathrm{j}, \mathrm{k})$ etc. over the submatrix (1..s, 1..s):

Rotating tool (random misalignment): cumulate diagonal ($j=k$) only Sliding tool (systematic misalignment): cumulate whole submatrix (all j, k)
s is the station number
dN1 is the column vector
and $\mathbf{d N} \mathbf{1}^{\top}$ its transpose

$$
\begin{aligned}
& d N 1_{j}=\left(m_{j} / \sqrt{2}\right) * \cos \left(l_{j}\right) * \cos \left(A_{j}\right) \\
& d N 2_{j}=-\left(m_{j} / \sqrt{2}\right) * \sin \left(A_{j}\right) \\
& d E 1_{j}=\left(m_{j} / \sqrt{2}\right) * \cos \left(l_{j}\right) * \sin \left(A_{j}\right) \\
& d E 2_{j}=\left(m_{j} / \sqrt{2}\right) * \cos \left(A_{j}\right) \\
& d V_{j}=-\left(m_{j} / \sqrt{2}\right) * \sin \left(l_{j}\right) \\
& m_{j}=\Delta M D_{j} * \tan \left(\alpha_{j}\right)
\end{aligned}
$$

