

British Geological Survey

Gateway to the Earth

Recent developments in modelling the internal magnetic field of the Earth

Susan Macmillan and Laurence Billingham

© NERC All rights reserved

New satellite data – ESA Swarm

 Three identical satellites, each 9 m long with boom deployed, measuring the magnetic field and complementary plasma parameters

Swarm magnetic field sensors

Optical bench: vector field magnetometer and 3-head star camera (Denmark)

Magnetometers mounted on boom

Launch/commissioning

- Launched on 22 November 2013 on Rockot launcher from the Plesetsk Cosmodrome in Russia
- Breeze upper stage released the tightly packed satellites into near-polar circular orbit at an altitude of 490 km
- Final orbit configuration is two at a lower altitude, measuring the East-West gradient of the magnetic field, the third at a higher altitude in a different local time sector

Data availability

- All instruments working to specification with exception of 1 (redundant) scalar magnetic field sensor and 1 accelerometer
- Unexpected thermo-electric/thermoelastic behaviour in optical bench – very small, can be modelled
- Global coverage of data within a few days

Data coverage 24 Oct

Satellite F magnetic data locations for 24-Oct-2014

Local times of near-noon (UT) ascending nodes currently 08:39 for lower 2 satellites and 09:36 for higher satellite

Swarm

Science goals

- Core field dynamics
 - Inner core control of outer core motion expected at poles?
 - Small-scale waves in core flows
- Lithospheric field down to ~350 km wavelengths
 - Deep lithospheric structure
 - World digital magnetic anomaly map
 - Bridging the gap to aeromag surveys
- 'External' magnetic fields
 - Ionosphere and magnetosphere short wavelength time/space variations
 - Magnetic forcing of atmospheric density, composition
 - 'Space weather' monitoring
- 3D mantle electrical conductivity

Swarm 3rd science meeting June 2014 First results presented, 175 participants from 25 countries

Swarm in summary

- Exciting new multi-SC mission
- Extremely useful for magnetic field model production
- Many science opportunities

New observatory data

• 68 with acceptable definitive or close-to-definitive data in 2014

What is close-to-definitive data?

- INTERMAGNET quasi-definitive data (data produced within 3 months of acquisition with accuracy close to that of definitive data)
- Good quality data from other observatories produced in a timely manner. Accounts for 10-20% of the data
- In practice: almost-final baselines from manual measurements applied to cleaned variometer data and data released in a timely manner

IAGA observatory workshop and INTERMAGNET meeting

- Successful measurement sessions
- ~40 talks
- Automatic absolute instrument (Belgium) and 1-second instrument developments (Ukraine/Denmark) coming along well
- Sable Island (SBL), South Georgia (KEP) (both UK) and Sonmiani (SON, Pakistan) accepted into INTERMAGNET

XVI IAGA WORKSHOP ON GEOMAGNETIC OBSERVATORY INSTRUMENTS, DATA ACQUISITION AND PROCESSING Hyderabad, INDIA, October 7-16, 2014

Mumbai <u>www.iigm.res.in</u>

International Association of Geomagnetism and Aeronomy

http://www.iugg.org/IAGA

Annual model revision cycle

Global modelling of more of the crustal field

BGS (*l*=17-50) + NEW MODEL (*l*=51-120)

© NERC All rights reserved

n

British Geological Survey Gateway to the Earth

Local modelling of the crustal field Equivalent sources for In-Field Referencing

A method to provide reference vectors for directional drilling as a complement to the currently used Fourier transform techniques

© NERC All rights reserved

Outline

- Magnetic field source regions
- The crustal field
- Overview of IFR
- Existing Fourier Techniques (IFR-FT)
- New Method (IFR-EQS)
 - introduction to the technique
 - tests with synthetic data

• IFR-FT vs IFR-EQS for real data

Note on nomenclature: Declination \rightarrow Azimuth Inclination \rightarrow Dip

Crustal field (B_c)

- $|\mathbf{B}_c|$ typically < 1 μ T (~< 2% of $|\mathbf{B}_{total}|$)
- Magnetite-bearing rocks in crust and upper mantle
 - Depths: <7 km oceanic <30 km continental
- Hydrocarbon exploration often use aeromagnetic surveys

(marine and land surveys sometimes used too)

- Processing
 - Lines levelled
 - B_m, B_e removed
 - Surface fitted

1 altitude

Need vectors

Scalar data

 Need many alts/depths

Overview of IFR

D°	l°	F(nT)
0.1	0.05	50

Target 95% confidence intervals from Russell *et al.* 1995

© NERC All rights reserved

Overview of IFR: Fourier methods

Away from magnetic sources $abla^2 \Phi_b = 0$ where $\mathbf{b} = -
abla \Phi_b$

Can use Fourier techniques to find $\mathbf{b}(\mathbf{r}_0 \pm \delta z)$ from $| \mathbf{b}(\mathbf{r}_0) |$

Process of downward continuation

Equivalent sources: simplest possible model

20

Magnetic field lines of a dipole in a vacuum

$$\mathbf{b}(\mathbf{r}) = \frac{\mu_0}{4\pi} \left(\frac{3\mathbf{r}(\mathbf{m} \cdot \mathbf{r})}{r^5} - \frac{\mathbf{m}}{r^3} \right)$$

$$\mathbf{b} = \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} \quad \mathbf{m} = \begin{pmatrix} m_x \\ m_y \\ m_z \end{pmatrix}$$

After: Russell, C.T. et al. Aust.J.Phys 1999

Quantity |r| |m| |b| base units: (m) (Am²) or (JT⁻¹) (T)

Need a system we can invert

Multiple dipoles & Multiple observations

1 dipole 1 observation $\mathbf{b}(\mathbf{r}) = \underline{\mathbf{G}}\mathbf{m}$

n dipoles m observations

Quickly end up with a fairly large (non-sparse) matrix

But tractable on modern workstation ~1e8 elements

But this assumes vector data. Need a system that works with scalar data

Include \mathbf{B}_{main} from a global model

• recall: $\Delta F \approx \mathbf{b}_{crust} \cdot \hat{\mathbf{b}}_{main}$

• hence:
$$\Delta F \approx (\underline{\mathbf{G}}_{crust}\mathbf{m}) \cdot \hat{\mathbf{b}}_{main}$$

- need something separable in m ...
 - after a bit (... OK, lots) of bookkeeping:

 $\Delta F \approx \mathbf{\underline{H}}\mathbf{m}$

• where: $\underline{\mathbf{H}} = \underline{\mathbf{H}}(\mathbf{\hat{b}}_{main}, \mathbf{r})$

 \mathbf{b}_{cru}

NOT TO SCALE

 \mathbf{b}

 \mathbf{b}_{main}

Synthetic data

these errors are small

Δ (relative)

160 140

120

100

80

60

40 20

80

70

60

50 °

30

20

10

:10

field strength (I)

nclination

Δ (absolute)

-40 -20 0 20 eastings

40

-40 -20 0 20 eastings

∆_{abs}|

-21

-40

eastings

northings

Ē field strength (-4 Ø

40

eastings

×10⁻²⁴

declination

_sds ^ds

10

× 10 15

10

inclination

ŝ

40

Real data

IFR setup within the area of BGS compilation

FT vs EQS

Setup over:

- Norfolk
 - Relatively low anomalies and gradients
 - Proxy for North Sea drilling areas

After we downward continue/invert for model: How well can we fit the input anomalies?

We can recover the input data very well

Norfolk

-20

After we downward continue/invert for model: How well can we fit the input anomalies?

EQS - input

⁴ Norfolk

With EQS, fitting the input data is easy. Getting realistic vectors at range of depths is much harder

Vector anomalies at input data surface

 $F_{c}(nT)$

Ο

C

0

FT

Norfolk

© NERC All rights reserved

Vector anomalies at 3.5 km depth

Norfolk

© NERC All

F_c (nT)

0

Vector anomalies along typical wellbores

Compute vector anomalies along 4 well trajectories

North, East, South and West of setup centre

Down to 3.5 km TVD

Wells in different directions

Summary

Strengths

IFR-FT	IFR-EQS
Used successfully in 1000s of wells	Needs less input data: similar results to FT with 40% of areal coverage
Simple to implement	Once set-up, fast to compute DIF
Small parameter space	Potential to use vector B survey data
Quick to set-up	Can use other geophysical data e.g. in complex regions, source locations inferred via seismic reflection depth to basement

Weaknesses	IFR-FT	IFR-EQS
	Slow to give DIF	Large parameter space
	Lots of data required	Long time to setup
NERC All rights reserved	Cannot include vector data	Iterative inversion <i>sensitive</i> to parameters and initial conditions

Conclusions

Overall:

We reproduce FT like results using a technique and a different set of underlying assumptions.

However, not enough evidence that EQS improves upon FT to support routine EQS deployment.

IFR-EQS	Strengths	Weaknesses
	Needs less input data: similar results to FT with 40% of areal coverage	Large parameter space
	Once set-up, fast to compute DIF	Long time to setup
	Potential to use vector B survey data	Iterative inversion <i>sensitive</i> to parameters and initial conditions
	Can use other geophysical data e.g. in complex regions, source locations inferred via seismic reflection depth to basement	