Explicit Calculation of Expansion Factors for Collision Avoidance between Two Co-planar Survey Error Ellipses

SPE Wellbore Positioning Technical Section
35th Meeting, 10th May 2012, Edinburgh
S. Sawaryn, BP, A. Jamieson, A. McGregor, Tech21.

Introduction

- Separation factors currently used to represent well proximity
> Based on ellipses
> Are an approximation
> Computationally efficient
> Easy to understand and interpret
- Propose a like-for-like replacement (Expansion Factor)
> Based on ellipses
> Are geometrically exact
> Maintain (or enhance) computational efficiency
- Provide a toolkit

Positional Uncertainty: Ellipsoids

2D Representation of 3D Separations

NORSOK D-010 Standard

Defines the model and acceptance criteria for the separation between two wellbores.

$$
S F=\frac{\delta}{E_{r}+E_{o}+R_{r}+R_{o}}
$$

Where:

$S F=$ separation factor
$\delta=$ distance between the centres of the twa wells
$E_{\mathrm{r}}=$ ellipse radius of lef. well
$E_{0}=$ ellipse radius of β bject well
$R_{r}=$ bit radusefret. well
$R_{0}=$ bit radius of object well

Centre Vector Method (CVM)

- Can be optimistic
- Should not be used

Pedal Curve Method (PCM)

- May be conservative

Quadratic Discriminant $=0$

- Explicit solution is possible
- Reliable

$$
\begin{aligned}
y & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-b}{2 a}
\end{aligned}
$$

Two-Sided Expansion Factor

- Neither optimistic nor conservative
- Confers advantage over existing methods

Zheng \& Palffy-Muhoray (ZPM)

- Crystallographic studies
- ZPM give the distance of closest approach
- Two-sided expansion is equivalent to an affine transform
- The expansion factor k is proportional to the computed scaling factor

Single-Sided Expansion Factor

- Neither optimistic nor conservative
- May be used to optimise space?

Yi-King Choi (YKC)

- Robotics studies - PhD

$$
P(\lambda)=\operatorname{det}\left[\lambda \underline{E}_{1}-\underline{E}_{2}\left(k^{2}\right)\right]=0
$$ Thesis, University of HongKong, 2008

- $P(\lambda)$ is a cubic equation in λ
- The cubic's discriminant vanishes when the ellipses touch
- Then leads to a quartic equation in the square of the expansion factor k^{2}
- Quick look methods

Closest Point to an Ellipse

- Toolkit example
- Geometrically equivalent to the single sided expansion of a circle against an ellipse

Scanning Algorithm

- In practice ellipses with high aspect ratios are avoided
- Confers stability to the calculations

Implementation

- Easy to implement
> ZPM provides code for 2D and 3D cases**
> YKC uses a similar framework
> Test cases provided
- Execution speed is maintained (or enhanced)

Method	Visual Basic Real [sec]	Proprietary Application* Imaginary [sec]
PCM	1.0	-
ZPM	1.3	14.1\quad Time taken for $10^{\wedge} 5$ calculations

Two-Sided Expansion of Ellipsoids

- Addresses special end condition
- Iterative solution based on other ZPM work
- Used infrequently

Summary

- Explicit calculation of expansion factors for collision avoidance between two coplanar ellipses is now possible.
> Full details of the algorithms will be presented in the paper SPE 159840 at the ATCE, $8^{\text {th }}-10^{\text {th }}$ October 2012, San Antonio.
> Like-for-like replacement of existing methods
> Satisfies both geometrical and probabilistic constraints
> Neither pessimistic nor optimistic
> Maintains or enhances computational efficiency
- Provided as a toolkit
- Offered for consideration as a replacement industry standard

