The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

ISN'T GRAVITY A CONSTANT?

Wellbore Positioning
Technical Section

Speaker Information

- Robert Wylie
- Product Line Director, Drilling Applications
- National Oilwell Varco
- March 4th, 2016

Summary

- Gravitational attraction
- Gravity strength around the world
\qquad
- How we measure gravity
\qquad
- Why TGF QC is important

- Effect of movement error
- Proposed Solution
- Calibrate to standard gee
- Survey companies who do this already
- Reminder to ensure that tools in transition are identified

Newton - which way is down?

Wellbore Positioning Technical Section

We measure acceleration not "g"

UNIVERSAL ACCELERATION

The equivalence principle.

Flat Earth Society - constant " g "

UNIVERSAL ACCELERATION

The equivalence principle.

Wellbore Positioning Technical Section

Modern view of Flat Earth from Space

United Nations supports this view

 ndex.php?curid=5469541

Round Earth theory

Wellbore Positioning Technical Section

Newton - gravitational attraction

Credte Borsen

Wellbore Positioning Technical Section
March 4 ${ }^{\text {th }}, 2016$
Fort Worth, Texas

Non-gravitational attraction

Wellbore Positioning Technical Section

Earth from Space

Wellbore Positioning Technical Section

But then there's centrifugal force

Gravitational Variations

Wellbore Positioning Technical Section

Gravitational Variations

Gravitational Variations

	Std Gravity	GARM* *
Earth Mass	\checkmark	\checkmark
Earth rotation		\checkmark
Earth shape		\checkmark
Depth (TVD)		\checkmark
Topography		\checkmark
Anomalies		\checkmark
Water/Rocks		\checkmark
Error (1 sigma)	$\sim 1.6 \mathrm{mG}$	$\sim 0.3 \mathrm{mG}$

*Global Acceleration Reference Model (MagVAR/SLB)
http://www.gfz-potsdam.de
$43^{\text {rd }}$ General Meeting
March $4^{\text {th }}, 2016$
Fort Worth, Texas

Gravitational Waves

Newton - gravitational attraction

Credte Borsen

Wellbore Positioning Technical Section
March 4 ${ }^{\text {th }}, 2016$
Fort Worth, Texas

" g " calculation at Equator

$g=G \frac{m_{1}}{r^{2}}=\left(6.67384 \times 10^{-11}\right) \frac{5.9722 \times 10^{24}}{\left(6.371 \times 10^{6}\right)^{2}}=9.8196 \mathrm{~m} . \mathrm{s}^{-2}$
$\mathrm{m}_{1}=$ mass of Earth (kg)
$r=$ radius of Earth at equator (m)
$\mathrm{G}=$ Gravitational Constant
https://en.wikipedia.org/wiki/Gravity_of_Earth

March $4^{\text {th }}, 2016$
Fort Worth, Texas

General local "g" calculation

$g_{0}=9.780327\left(1+0.0053024 \sin ^{2} \theta-0.0000058 \sin ^{2} 2 \theta\right)-0.000003086 h$

$\Theta=$ latitude
$\mathrm{h}=$ altitude (m)
https://en.wikipedia.org/wiki/Gravity_of_Earth

Local calculations

	Equator	Andoversford	New Waverly (Texas)	Calgary	E of Shetland	Prudhoe Bay	Cusco, Peru
Latitude (degrees)	0	51.86	30.5392	51.0486	60.35	70.3265	-13.525
sin sqrd (phi)	0	0.999437409	0.59082138	0.497719	0.37566002	0.876341216	0.669786293
sin sqrd ($\mathbf{2}^{*}$ phi)	0	002249096	0.967005908	0.999979	0.938158277	0.43346915	0.884690459
Altitude (meters)	0	200	107.9	1200	0	10	3399
local "g"	9.78033	9.82599	9.80758	9.76905	9.79976	9.82544	9.71012
Relative to Andoversford	0.9954	1.0000	0.9981	0.9942	0.9973	0.9999	0.9882
Relative to Equator	1.0000	1.0047	1.0028	0.9988	1.0020	1.0046	0.9928

43 ${ }^{\text {rd }}$ General Meeting
March $4^{\text {th }}, 2016$
Fort Worth, Texas
Wellbore Positioning Technical Section

Inclination calculation

$$
\text { Inclination }=\cos ^{-1}\left(\frac{g_{z}}{g_{\text {total }}}\right)
$$

Where,
$g_{z} \quad=$ the acceleration measured along the tool (borehole) axis
$g_{\text {total }} \quad=$ the total gravitational field
Inclination = the angle from the tool axis to vertical
If $\mathrm{g}_{\text {total }}$ is calculated from the three orthogonal accelerometer measurements,
where $\mathrm{g}_{\text {total }}=\left(\sqrt{g_{x}{ }^{2}+g_{y}{ }^{2}+g_{z}{ }^{2}}\right)$,
then Inclination is Scale Factor independent.
But, if one axis has an error due to tool acceleration during measurement for example, then that error will show up in Inclination, and also in Azimuth. This error may not be noticed during QA/QC unless $g_{\text {total }}$ can be compared to the expected local value.

Calibration

Purpose: To reduce errors in accuracy through one or more of the following

- Primary Standard
- Secondary Standard, with a higher accuracy than the instrument
- Known input source

Directional instruments calibrated against a known input source
Earth's gravity field
Earth's magnetic field
The method of calibration used is a system minimising errors to achieve optimum performance.

Relevant Error Sources

- Noise and drift Electronics (Scalar)
- Scale Factor (Gain) Magnitude (Scalar)
- Datum (Offset) Magnitude (Scalar)
- Temperature coefficients Magnitude (Scalar)
- Axis (misalignment) Positional (Vector)

Error model assumptions - 2.5mg error

error in Gx at Inc $=45 \mathrm{deg} \& \mathrm{Az}=90 \mathrm{deg}$

error in Gz at $\mathrm{Inc}=45 \mathrm{deg} \& \mathrm{Az}=90 \mathrm{deg}$

error in Gx at $\operatorname{Inc}=45 \mathrm{deg} \& A z=0 \mathrm{deg}$

error in Gz at $\operatorname{lnc}=45 \mathrm{deg} \& A z=0 \mathrm{deg}$
0.0000000

Error model assumptions

- +/- 2.5 mg ?

Effect of incorrect Scale Factor?

- Reduces ability to detect tool movement during survey through QA/QC
- Leading to inaccurate inclination and hence azimuth
- Multi Station Analysis of accelerometer values?
- $3^{\text {rd }}$ party reviews of raw data?

Wellbore Positioning Technical Section

