

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

ISN'T GRAVITY A CONSTANT?

Wellbore Positioning Technical Section

Speaker Information

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

- Robert Wylie
- Product Line Director, Drilling Applications
- National Oilwell Varco
- March 4th, 2016

Wellbore Positioning Technical Section

Summary

Gravitational attraction

Gravity constant

• Gravity strength around the world

- Fiat earth
- Roundeath
- Real earth shape satellite image?
- How we measure gravity
 - Lab / calibration
 - Down hole
 - Difference between gravity and movement of sensor (none)
- Why TGF QC is important
 - Effect of scale factor error
 - Effect of bias error
 - Effect of movement
 - Effect of gravitational waves
- Effect of movement error
 - on inclination
 - On azimuth

Proposed solution

- Calibrate to standard gee
- Survey companies who do this already
- Reminder to ensure that tools in transition are identified

43rd General Meeting March 4th, 2016 Fort Worth, Texas

Newton – which way is down?

43rd General Meeting March 4th, 2016 Fort Worth, Texas

We measure acceleration not "g"

UNIVERSAL ACCELERATION

The equivalence principle.

Wiki

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

43rd General Meeting March 4th, 2016 Fort Worth, Texas

Flat Earth Society – constant "g"

By Blanko http://wiki.tfes.org/File:Flat_ Earth_Society_Logo.png, CC BY-SA 4.0, https://commons.wikimedia. org/w/index.php?curid=4424 2127

> 43rd General Meeting March 4th, 2016 Fort Worth, Texas

The equivalence principle.

Wiki

Modern view of Flat Earth from Space

By Trekky0623 at English Wikipedia ("I made this map myself") - Transferred from en.wikipedia to Commons by MathiasRav., Public Domain, https://commons.wikimedia.org/w/i ndex.php?curid=5469541

43rd General Meeting March 4th, 2016 Fort Worth, Texas

United Nations supports this view

By Trekky0623 at English Wikipedia ("I made this map myself") - Transferred from en.wikipedia to Commons by MathiasRav., Public Domain, https://commons.wikimedia.org/w/i ndex.php?curid=5469541

43rd General Meeting March 4th, 2016 Fort Worth, Texas

Round Earth theory

43rd General Meeting March 4th, 2016 Fort Worth, Texas

Newton - gravitational attraction

43rd General Meeting March 4th, 2016 Fort Worth, Texas

Non-gravitational attraction

43rd General Meeting March 4th, 2016 Fort Worth, Texas

Earth from Space

43rd General Meeting March 4th, 2016 Fort Worth, Texas

But then there's centrifugal force

43rd General Meeting March 4th, 2016 Fort Worth, Texas

Gravitational Variations

43rd General Meeting March 4th, 2016 Fort Worth, Texas

Gravitational Variations

43rd General Meeting March 4th, 2016 Fort Worth, Texas

Gravitational Variations

	Std Gravity	GARM*
Earth Mass	\checkmark	\checkmark
Earth rotation		\checkmark
Earth shape		\checkmark
Depth (TVD)		✓
Topography		✓
Anomalies		✓
Water/Rocks		\checkmark
Error (1 sigma)	~1.6 mG	~0.3 mG

http://www.gfz-potsdam.de

*Global Acceleration Reference Model (MagVAR/SLB)

43rd General Meeting March 4th, 2016 Fort Worth, Texas Wellbore Positioning Technical Section

Gravitational Waves

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

43rd General Meeting March 4th, 2016 Fort Worth, Texas

Wellbore Positioning Technical Section

Newton - gravitational attraction

43rd General Meeting March 4th, 2016 Fort Worth, Texas

"g" calculation at Equator

$$g = G \frac{m_1}{r^2} = (6.67384 \times 10^{-11}) \frac{5.9722 \times 10^{24}}{(6.371 \times 10^6)^2} = 9.8196m \cdot s^{-2}$$

- $m_1 = mass of Earth (kg)$
- r = radius of Earth at equator (m)
- G = Gravitational Constant

https://en.wikipedia.org/wiki/Gravity_of_Earth

43rd General Meeting March 4th, 2016 Fort Worth, Texas

General local "g" calculation

 $g_0 = 9.780327(1 + 0.0053024 \sin^2 \theta - 0.0000058 \sin^2 2\theta) - 0.000003086 h$

- Θ = latitude
- h = altitude (m)

https://en.wikipedia.org/wiki/Gravity_of_Earth

43rd General Meeting March 4th, 2016 Fort Worth, Texas

Local calculations

			New Waverly		E of	Prudhoe	
	Equator	Andoversford	(Texas)	Calgary	Shetland	Вау	Cusco, Peru
Latitude (degrees)	0	51.86	30.5392	51.0486	60.35	70.3265	-13.525
sin sqrd (phi)	0						
sin sqrd (2*phi)	0						
Altitude (meters)	0	200	107.9	1200	0	10	3399
local "g"	9.78033	9.82599	9.80758	9.76905	9.79976	9.82544	9.71012
Relative to Andoversford	0.9954	1.0000	0.9981	0.9942	0.9973	0.9999	0.9882
Relative to Equator	1.0000	1.0047	1.0028	0.9988	1.0020	1.0046	0.9928

43rd General Meeting March 4th, 2016 Fort Worth, Texas Wellbore Positioning Technical Section

Inclination calculation
Inclination =
$$\cos^{-1}\left(\frac{g_z}{g_{total}}\right)$$

Where,

 g_z = the acceleration measured along the tool (borehole) axis g_{total} = the total gravitational field Inclination = the angle from the tool axis to vertical

If g_{total} is calculated from the three orthogonal accelerometer measurements,

where
$$g_{total} = (\sqrt{g_x^2 + g_y^2 + g_z^2})$$
,

then Inclination is Scale Factor independent.

But, if one axis has an error due to tool acceleration during measurement for example, then that error will show up in Inclination, and also in Azimuth. This error may not be noticed during QA/QC unless g_{total} can be compared to the expected local value.

43rd General Meeting March 4th, 2016 Fort Worth, Texas

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Calibration

Purpose: To reduce errors in accuracy through one or more of the following

- Primary Standard
- Secondary Standard, with a higher accuracy than the instrument
- Known input source

Directional instruments calibrated against a known input source

Earth's gravity field Earth's magnetic field

The method of calibration used is a system minimising errors to achieve optimum performance.

Relevant Error Sources

٠	Noise and drift	Electronics	(Scalar)
٠	Scale Factor (Gain)	Magnitude	(Scalar)
٠	Datum (Offset)	Magnitude	(Scalar)
٠	Temperature coefficients	Magnitude	(Scalar)
•	Axis (misalignment)	Positional	(Vector)

43rd General Meeting March 4th, 2016 Fort Worth, Texas

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Error model assumptions – 2.5mg error

error in Gz at Inc = 45 deg & Az = 90 deg

Highside (deg)

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

43rd General Meeting March 4th, 2016 Fort Worth, Texas Wellbore Positioning Technical Section

Error model assumptions

• +/- 2.5mg?

43rd General Meeting March 4th, 2016 Fort Worth, Texas

Effect of incorrect Scale Factor?

- Reduces ability to detect tool movement during survey through QA/QC
 - Leading to inaccurate inclination and hence azimuth

• Multi Station Analysis of accelerometer values?

• 3rd party reviews of raw data?

43rd General Meeting March 4th, 2016 Fort Worth, Texas

43rd General Meeting March 4th, 2016 Fort Worth, Texas

