

pplied geoscience for our changing Earth

Recent developments in geomagnetic referencing services

Susan Macmillan, Brian Hamilton and Ciaran Beggan

© NERC All rights reserved

To cover...

- Overview of services
- New global datasets
- BGGM
 - BGGM2012 update
 - are the confidence limits changing?
- Where are we on current activity cycle?
- Visit to Eskdalemuir observatory tomorrow

The Earth's magnetic field

- Most of the field is from the Earth's core
 varies slowly with time (months to years)
 - Local fields from magnetized rocks in Earth's crust
 - relatively stable with time
- Fields due to currents in the ionosphere and magnetosphere
 - variations from seconds to years

Geomagnetic referencing services

- BGGM global main field model
 - includes quiet night time external field and long wavelength crustal field
- IFR combines main field with estimates of local crustal field
 - higher spatial resolution of crustal field at drilling site
- IIFR combines IFR with estimates of field from external sources
 - higher time resolution
 - supplied in real-time

Global data gathering efforts - ground

- BGS part of the new ICSU Interdisciplinary Body, the World Data System
- BGS has lead role in INTERMAGNET
- Currently there are ~160 observatories, in 2011 more than 100 are members of INTERMAGNET

INTERMAGNET

BGS investing in observatories around the world

Global data gathering - satellites

Ørsted

- Launched 1999
- Danish-led mission
- BGS is an Ørsted international science team
- Altitude 640-850 km, all local times sampled in 2.2 years
- Scalar data still being returned

CHAMP

- Launched 2000
- German-led mission
- BGS is a CHAMP international science team
- Altitude 330-450 km, all local times sampled in 4-5 months
- Satellite re-entered atmosphere and burnt up 19 Sep 2010

Global data gathering - satellites

Swarm

- ESA Earth Explorer Opportunity Mission
- For study of the dynamics of the Earth's magnetic field and its interactions with the Earth system
- Launch due October 2012
- Mission life 4+ years
- BGS one of 6-institute consortium developing the Level 2 Processing Facility

© NERC All rights reserved

BGS Global Geomagnetic Model

- For directional drilling
- Produced every year since 1991
- A high temporal and spatial resolution model
- Accuracy quantified

New for BGGM2012

- New data: Ørsted scalar and observatory vector data, particularly in 2011
- Comparing predictive field from polynomial extrapolation and physics-based core flows

2011 observatory data

Core flows for predicting the magnetic field BGGM 2011 retrospective analysis

- Create a steady core flow model to degree 13:
 - use BGGM2011 field estimates from 2006 to 2010
 - frozen flux assumption; geostrophic constraint
 - predict the magnetic field beyond 2010 and compare with independent data

Retrospective analysis 2010-12

- Begin at 2010.0
 - Advect magnetic field forward in time on a monthly timestep for 2 years
- After two years the field predicted by BGGM and Steady Flow (SF) diverge
- Compare BGGM prediction and SF prediction to observatory data NOT used in modelling process

Global statistics

- Conclusion:
 - prediction of SF almost as good (on average) as the current method over two years
- Caveats:
 - BGGM prediction has acceleration, SF does not yet
- Next step:
 - include acceleration into flow models

				_
	ΔII	righte	racarva	Ы
BINENO	ΛII	nymo	1030100	u

Statistic	SF	BGGM
X Std	11.80	11.74
X MAD	8.58	8.54
Y Std	6.50	6.41
Y MAD	4.41	4.33
Z Std	8.80	8.50
Z MAD	6.53	6.25

Differences in Std values

BGGM uncertainties – update of analysis for ISCWSA March 2009 (reported in SPE 119851)

- Ideally would like to use downhole magnetic data, however
 - difficult to obtain
 - in wide range of formats
 - can be contaminated
- Solution: simulate downhole data with observatory minute values <u>not used</u> in deriving model under test
 - good coverage in time allowing testing of series of annually revised models over > one solar cycle

Distribution of observatory data

Are observatory data representative of magnetic measurements downhole?

- Crustal field component not representative of hydrocarbon geology
 - some observatories sited on volcanic rocks have very large crustal fields (>1° and 1000 nT)
 - would make errors larger than expected for hydrocarbon geology
- Poor spatial coverage
- Solution: adjust observatory data using more realistic crustal field estimates
 - remove modelled observatory bias from (observed-model) differences
 - order differences, get limits and combine with more realistic crustal field limits

More realistic crustal field estimates (1)

• Land-based magnetic vector surveys

More realistic crustal field estimates (2)

 plus airborne and shipborne magnetic data local to oil & gas fields

Variation of uncertainties by model release year

Conclusion: the limits are still valid for BGGM2007 and subsequent models

Variation of uncertainties with location

• 95.4% confidence limits

Look-up tables for 6 confidence levels online

Feedback from error sub-committee

- look-up tables for 6 confidence levels difficult to implement in error models
- tables are for BGGM only
- using the 95.4% table
 - for declination investigate revising error terms AZ (constant) and DBH (H dependent)
 - provide 1 table that contains appropriate 1-sigma values for error propagation purposes and multiplying up for confidence of upwards of 95%

Predicted solar and geomagnetic activity levels

© NERC All rights reserved

Eskdalemuir visit agenda

Time	
0830	Pick-up Radisson Blu
1030	Arrive + coffee & snacks
1045	Introduction presentation
1100	Tour of the observatory
1230	Final presentation
1300	Leave Eskdalemuir observatory
1400	Lunch Peebles
1530	Leave Peebles
1630	Arrive Edinburgh Radisson Blu