# Shale Gas; Wellbore Positioning Challenges



Pete Clark, Directional Drilling Advisor ISCWSA, Copenhagen, 3/4/11

© 2011 Chevron

# Shale Gas; Wellbore Positioning Challenges



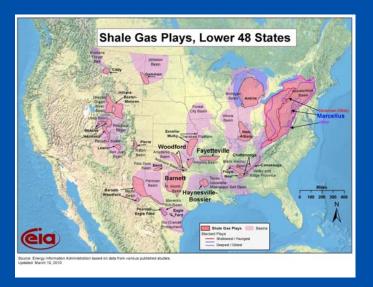
- Why is it important to us?
  - Emerging trend in drilling industry
  - Several familiar challenges in a new environment
  - Several unique challenges

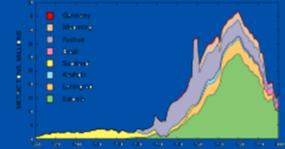


### Content

**Market Place Current Well Designs & Practices Multi-well Pads Collision Avoidance Drilling the Horizontal** Well Spacing Microseismic, Well Spacing and Frac Monitoring Future well designs Conclusions







# Market Place



#### Shale Gas

- 1821 shale gas well, Fredonia, NY predates Drake oil well by 38 years
- Extensive basins US land
- Over 100 rigs currently drilling in Marcellus shale
- Significant drilling market share with smaller DD / MWD service providers





- Shale Oil
  - International
  - Considered "unconventional"
  - Emerging energy source

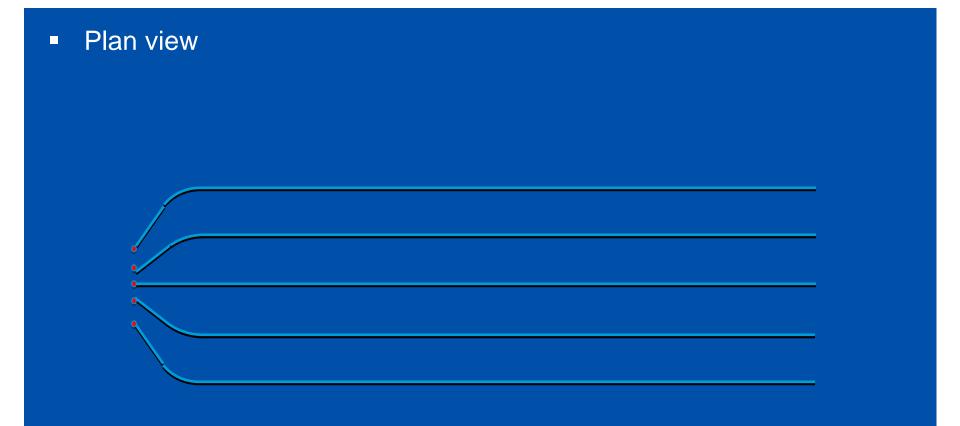
### Market



#### Shale Gas (USA)

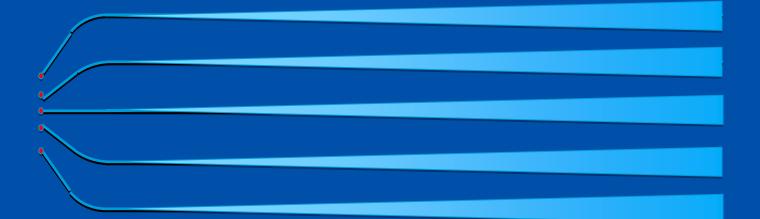
- 1996, 1.6% of US gas production
- 2006, 5.9% of US gas production
- 2007, 4185 shale gas wells drilled
- Trends continuing upward
- Shale Gas (international)
  - November 2009 agreement between USA
    & China to share shale gas technology
  - November 2010 agreement between USA
    & India to share shale gas technology
  - Austria, Germany, Hungary, Poland assessing shale gas potential




## **Current Well Design & Practices**

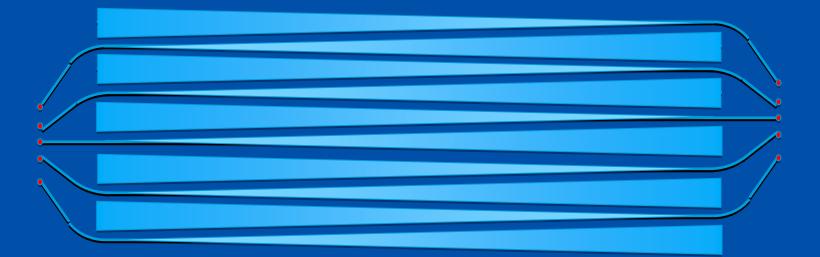


- Drill vertically, build at medium radius then drill horizontal
- Hydraulically fracture rock to release gas
- Trend towards multi-well pads
- Parallel horizontal wellbores aligned with stress orientations
- Horizontal length may be determined by lease boundaries



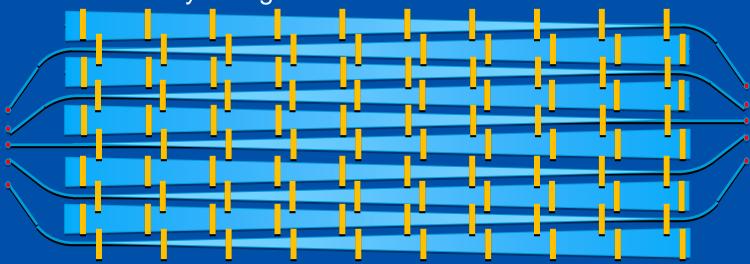





### Plan view showing positional uncertainty

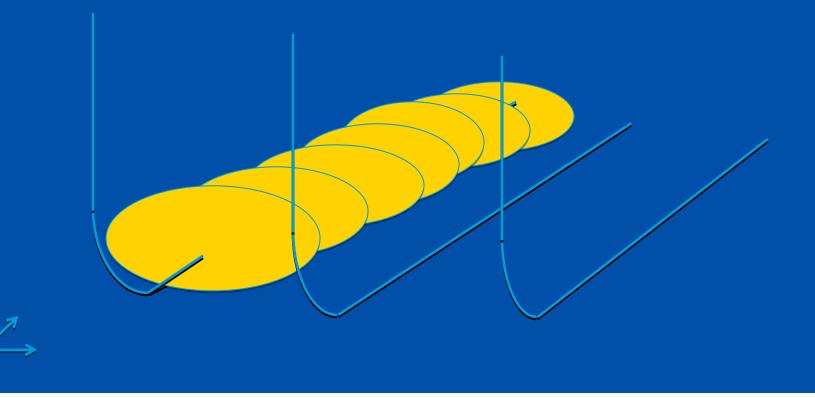





- Plan view showing positional uncertainty
- Horizontally opposed wells may facilitate shorter development timeline





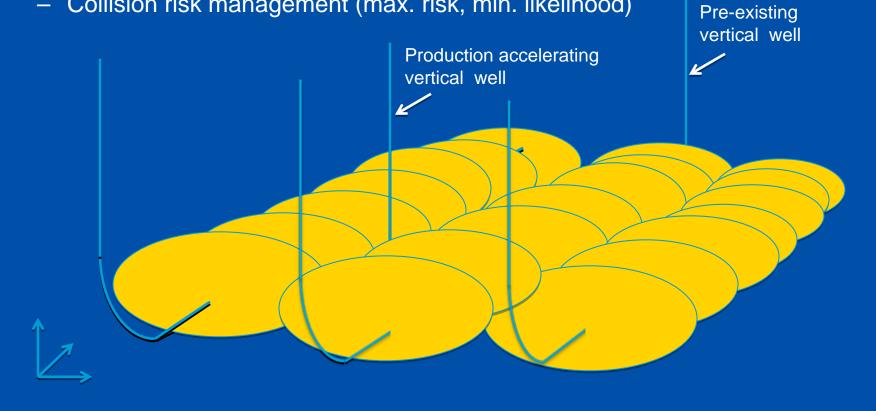

- Plan view showing positional uncertainty
- Horizontally opposed wells may facilitate shorter development timeline
- Frac's indicated by orange bars





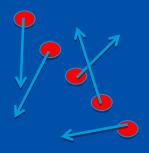


- Frac growth measured by microseismic
- Timing; investment, return on investment & scheduling









#### Vertical's

- Pre-development & frac "parasites"
- Collision risk management (max. risk, min. likelihood)



## **Multi-well pads**

- Multi-well pads environmental impact & cost
- Parallel wells in reservoir
  - Constant separation at optimal orientation (100's of ft based on frac propagation)
  - 3D well designs achieving separation from surface
  - Opposing pads
- "Air rig" drilling vertical portion
  - Multiple rigs on single well; depth offset
  - Generally run with inclination only surveys or single shots
- Surface positional uncertainty
  - Correct use for neighboring slots and opposing pattern
- Batch drilling
  - Potential for drilling next to live gas wells
- Best practice manage slot to target allocation
- Best practice implement well bore surveying & positional uncertainty standards
- Best practice implement collision avoidance planning and monitoring standards





## **Collision Avoidance**



#### Cultural issue

- Shale gas drilling currently US land centric
- US land market generalized by solo wells in relatively low pressure reservoirs

#### Risk

- Flowing gas wells accessing fractured reservoir
- Intersection followed by lost circulation and kick
- Standards & interpretation
  - Calculation should be run consistently
  - Calculation should be easy to interpret
    - Simplified workflow for well construction production line
    - Visual rather than numerical answers
    - Real time, at site







## **Drilling the Horizontal**



- Omni-directional gamma steering / sonic for "Frac" index
- Bent motor or VGS causing "slide / rotate" patterns
  - Especially horizontal, curve tends to be high percentage steering
- Steering relative to geologic type log
- Success requires management of interface between directional driller
  & operations geologist

TVD

Gamma

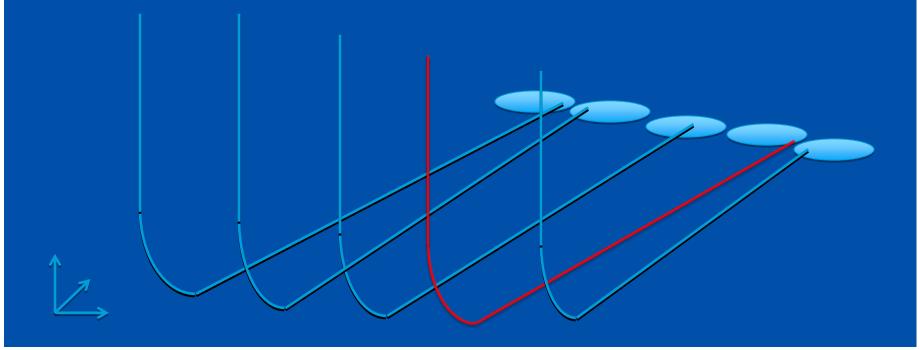
## Well spacing



300ft

3.4°

5000ft


- Assumption; mis-application of Total Azimuth Correction (TAC) is one of the most common well-placement gross errors
- Assumption; constant separation distance and navigating for reservoir "sweet spot" (tvd)
- Risk; mis-application of TAC leading to well intersection
- Powered PDC not sensitive to intersection angle

## Well spacing



#### Lateral uncertainty

- Determinant of horizontal length
- Determinant of frac efficiency
  - Potential to meet specification without meeting objective



## Well spacing



#### Well design variables

- Horizontal length, well separation, lateral uncertainty
- Well separation based on optimal placement / frac. efficiency
- Survey accuracy / lateral uncertainty likely to cause frac.-less volumes
- Systematic errors between wells should / could be excluded in calc.
- Horizontal length determinants
  - Lease boundary, drilling capability, production capacity
- Knowing wells are not ideally separated do we drill past the conventional acceptable collision risk rule while ranging to manage risk of intersection? Allowable incidence angle 16.7° 30ft

100ft

30ft

2°

859ft Allowable projection from MWD

## Lease Efficiency



Hardline Boundary

#### Hardlines and boundaries

- Hardline may be based on nominal or planned positional uncertainty
- Shape of lease
- Proximity to plane & plan
- Impact of survey program on recoverable reserves No-Go Lease

Actual wellpath with positional uncertainty

Planned wellpath with positional uncertainty

# Microseismic Well Spacing & Frac Monitoring



- Real time frac. monitoring
- Frac positioning modeling partly dependent on positional uncertainty of monitoring well
- Geophones on surface and / or in monitor well
  - Due to high frequency (~100-150Hz), 2000 2500 ft max spacing from monitor to treating well
- May need to plan monitor wells in order to optimize well spacing / frac program / horizontal length
  - Well design / development plan issue
  - Potential collision risk

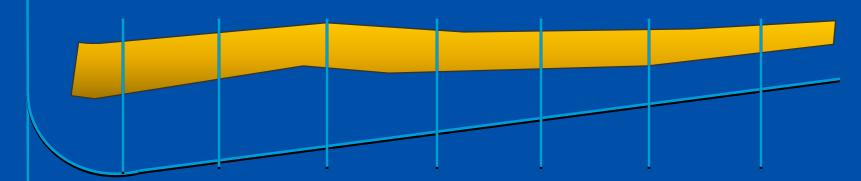


## ...and beyond








Single pump-jack Multiple wells



#### Multi-well pad site







## Conclusions

- Risk collision
  - Gross error
  - System failure
  - Exempt offset & manage risk with ranging
- Positional uncertainty
  - Robust application of surface uncertainty
  - Clearance calculations should already take global systematic errors into account.
    Parallel wells need a similar approach to target analysis
- 3D well designs / collision avoidance in high volume environment
  - Take current best practice and refine workflow for efficiency visual answers
  - Remote specialists aiding rigsite operations; knowledge management
  - Assess lease efficiency
- Technology & tools easy to transferred. Experience, less easy
- It's the well you don't know about that's likely to be the problem.



