ERROR MODEL MAINTENCE GROUP UPDATE

Andy McGregor – Tech21

Overview of Error Models presented by John Smith

Error Model Documentation

On going

Document – based on ebook write up

Have a spreadsheet demonstrating implementation – needs some checking

Flowchart of the process

The error model definitions – in spreadsheet

Mathematical derivation – lumped misalignments and scalefactors, singular cases for accelerometer biases

Validation Datasets for Software

Should create further validation data sets for

Inclination only

MWD-MWD tie-ons with latest Rev4 models

Gyro-MWD tie-on

Some problems about reproducing gyro paper results when gyro is re-initialised. Needs clarification

Survey Accuracy (ISCWSA)

Inclination Only Surveys

- Recommendations for handling inc only surveys has been added to the website
- Will update this document for a further release with details of handling tie-ons with directional surveys

- Standard anti-collision method is combining covariances
- Current combined methods simply add uncertainty and implicitly assume all errors are uncorrelated.
- Noted that this was not strictly correct for geomagnetic reference terms
- Error model able to accommodate 1 or 0 values via global propagation. Rarely implemented

 Current practice generally the conservative option – perhaps optimistic for interleaved wells

•

Previously agreed to

- Evaluate correlation values
- Evaluate effect is this important?
- Determine how they could be handled

 Stefan Maus estimated correlations between declination error if two surveys depending on geomagnetic model in use

Estimate of average actual correlation (Stefan's analysis)								
	IGRF	Standard	HD #1	HD #2	IFR1 #1	IFR1 #2	IFR2 #1	IFR2 #2
IGRF	0.55	0.66	0.34	0.34	0.03	0.03	0.03	0.03
Standard		0.79	0.40	0.40	0.03	0.03	0.03	0.03
HD #1			0.68	0.49	0.04	0.04	0.04	0.04
HD #2				0.68	0.04	0.04	0.04	0.04
IFR1 #1					0.39	0.08	0.39	0.08
IFR1 #2						0.39	0.08	0.39
IFR2 #1							0.44	0.09
IFR2 #2								0.44

- Evaluated the effect on some scenarios
 - parallel, opposing and converging wells
 - for MWD, MWD+IFR single and multiple legs
- Run analysis on extreme cases
 - fully correlated and non-correlated
- Significant effect on ellipses, depending on relative importance of declination in the ellipse
- Most common cases conservative only combined covariance in opposing wells optimistic

Course Length

- Jerry Codling presented details of further work on effect of survey interval on well position
- Candidate method of handling this
- Based on survey interval and angle changes across that interval
- Needs evaluated in an error model
- Discussed rules when Blind Drilling more appropriate
- Wanted to ensure stable and that users not penalised for shorter course lengths

Relationship with OWSG

- Trying to define boundaries with OWSG on models
- Error Model Maintenance group
 - Define mathematical framework
 - Producing supporting material for the framework
 - Including weighting functions
 - Handle the generic MWD model and derivatives
 - Uncertainties of geo-magnetic references

Relationship with OWSG

OWSG have created a reference set of models

Can create further models (as can any user)

Have various categories A/B/C/E/O

Offered as candidate – not mandated

Where new models are being produced will consult EMM prior to publication. New maths in advance.

Will not publish experimental or contractor models on website

