SPE-178826-MS New Instrument Performance Models for Combined Wellbore Surveys Facilitate Optimal Use of Survey Information

Adrián Ledroz, Jon Bang, John Weston gyrodata

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK Wellbore Positioning Technical Section

SPE-178826-MS

Presented at the IADC/SPE Drilling Conference and Exhibition Fort Worth, Texas, 1-3 March 2016

Accepted for publication in SPE Drilling & Completion

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK Wellbore Positioning Technical Section

2

Jon Bang, PhD

- Development Engineer
- Experience
 - Gyrodata Since 2013
 - Petroleum Research Since 1991
- Speciality
 - Wellbore Positioning
 - Survey Quality
 - Position Uncertainty Analysis

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

3

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

- Founded in 1980, Houston, Texas
- Globally positioned to support a wide range of markets
 - Operating in +80 countries, with +47 locations
 - Customer base of +625 Customers
- Deliver precision wellbore placement & investigation solutions for drilling, completions, and production challenges
 - Drilling Services: Performance Motors, RSS, MWD, LWD
 - Wellbore Surveying: Gyro, GWD, Conventional Systems
 - **Production Logging**: MicroGuide, CBL, Caliper, Magnetic Thickness Detection

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

CONTENTS

- Introduction / Challenge
- Solution
- Results
- Conclusions

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

BENEFITS OF MULTIPLE SURVEYS

- Mutual quality check and validation
- Weighted average gives optimal position estimate
- Weighted average gives minimum position uncertainty

TWO ASSUMPTIONS

The surveys must have passed standard quality tests

- No gross errors
- The surveys must be interpolated to common MD

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

ERROR ANALYSIS PROCEDURE

IPM FILE EXAMPLE

IPM = «Instrument Performance Model» = Description of surveying tool's accuracy

#				bug con	
#					
#					
#Name	Vector	Tie-On	Unit	value	Formula
drfr	e	r	m	0.35	1.0
drfr	s	r	m	2.2	1.0
drfs	S	s	m	1	1.0
dsfs	e	S	-	0.00056	tmd
dsta	e	a	im	2.5e-07	tmd*tvd
w 12	n	ñ		1	sin(inc)
w 34	n	n		ī	sort(1-(w 12)/2)
xvm1	i	5	d	0.1	w 12
xym2	i	ŝ	d	0 1	w 12
xvm3	i	S	d	0.1	cos(azi)*w 34
xvm3	i	S	d	0.1	-sin(azi)*w 34
xym4	i	5	d	0 1	sin(azi)*w 34
xym4	i	5	d	0 1	cos(azi)*w 34
sad	i	5	d	0.08	(sin(inc))
deca	-	9	d	0.15	
decr	2	9	d	0.1	1.0
dhha	2	a	dat	1500	1.0/(mtot*cos(din))
dbbr	2	2 A	dat	1500	1. 0/(mtot kos(dip))
amil	a	-	ot	200	sin(inc)*sin(arm)/(mtot*cos(din))
abyy ±1	i	5	inc	0.004	() (inclust) (inclust cos(dip))
abxy_t1	-	5		0.004	(tap(dip)*coc(inc)*cip(arm))/dtat
abxy_t1	1	5	1	0.004	(cost (inc) top(dip)*cos(azm)//gtot
abxy_L2	-	3		0.004	(cos(inc)-carding) cos(azii) sin(inc))/geoc
abz	1	2		0.004	(-sm(din)//gtot
dUZ	d	2	151	0.004	(clan(drp)*sin(dre))/gtot
dSXy_LL	1	5	-	0.0005	$(\sin(\sin(2)\cos(\sin(2))/(2\sqrt{3})))$
asxy_LI	d	5	S - 3	0.0005	(-(tan(d))/stn(hc)/cos(thc)/stn(azm))/(z/0.5)
asxy_L2	1	5	100	0.0005	(stricting) cos(trict)/2
asxy_t2	a	S		0.0005	(-(tan(d)p)"stn(1nc)"cos(1nc)"stn(azm)))/2
asxy_t3	a	5	-	0.0005	(tan(d)p)*s1n(1nc)*cos(azm)-cos(1nc))/2
asz	1	S	-	0.0005	(-sin(inc)*cos(inc))
asz	d	5	1.	0.0005	(ran(a)p) sin(inc) cos(inc) sin(azm))
mpxy_t1	a	S	nt	10	(-(cos(inc)*sin(azm)))/(mtot*cos(aip))
nbxy_t2	a	S	nt	70	(cos(azm))/(mtot*cos(aip))
nbz	a	S	nt	/0	(-sin(inc)*sin(azm))/(mtot*cos(dip))
nsxy_t1	a	S	100	0.0016	(sin(inc)*sin(azm)*(tan(dip)*cos(inc)+sin(inc)*cos(azm)))/(2^0.5)
nsxy_t2	a	S	-	0.0016	<pre>(sin(azm)*(tan(dip)*sin(inc)*cos(inc)-(cos(inc))^2*cos(azm)-cos(azm)))/2</pre>
msxy_t3	a	S	-	0.0016	<pre>(cos(inc)*(cos(azm))^2-cos(inc)*(sin(azm))^2-tan(dip)*sin(inc)*cos(azm))/2</pre>
msz	a	S	57 <u>-</u> 0	0.0016	(-(sin(inc)*cos(azm)+tan(dip)*cos(inc))*sin(inc)*sin(azm))

Fixed format table

 Contents vary according to surveying tool

Averaged IPM = Add another IPM model; add weighting factors to tune the output

AVERAGED IPM FILE – REQUIREMENTS

- Results close to true average
 - Conservative
- Any combination of tools and range of uncertainties
- Any wellbore profile
- Any number of surveys
- Practical algorithm
 - Systematic approach
 - Easy implementation, automation

STEP 1: IDENTICAL ERROR TERMS

Correlated: Keep the one with smallest magnitude

Uncorrelated: Keep one, with improved magnitude

STEP 2: WEIGHTING FACTORS w_1 , w_2

Slide 12

AH-HS-Lat SYSTEM IS LOCAL => WEIGHTS ARE APPROXIMATE

STEP 3: ADJUSTMENT FACTORS B_D, B_l, B_A

Problem

True average may be under-estimated

Solution

- Ellipsoid orientations are approximately equal
- B_D , B_I , B_A = ratio of ellipsoid axes
- Magnify w_{A1} and w_{A2} by B_A , etc.
- Update => final averaged IPM file

AVERAGED IPM FILE, CASE 1

CASE 1: Inc = 0-30°, N-S

CASE 2: NEAR HORIZONTAL, N-S

Slide 17

CASE 3: NEAR HORIZONTAL, E-W

CONCLUSIONS: AVERAGING METHOD

- Individual surveys must pass QC routines: no gross errors
- Algorithm
 - D, I, A weighting factors + adjustment factors
 - Analytic, no iteration, suited for automation
- Results
 - Close to true average, conservative
 - Any tools, any uncertainties
 - Any wellbore profile; best accuracy in tangential sections
 - Any number of surveys
- Possible challenges
 - Validation of method for different well profiles

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

CONCLUSIONS: BENEFITS OF AVERAGING

- One survey data set per wellbore
- Optimal wellbore positions + improved accuracy
- Optimise survey programs
- Improved reliability of anti-collision calculations
- May turn unfeasible projects into achievable ones
 - Small drilling targets
 - Long extended reach wells
 - Highly congested fields

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

ACKNOWLEDGEMENTS

Erik Nyrnes, Statoil

Gyrodata Inc.

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

Wellbore Positioning Technical Section

Thank you

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK Wellbore Positioning Technical Section

