Overview of Geologic & Driller's Targets

Chevron

Pete Clark CVX ETC D&C DEU DD SME 1 October 2015

© 2015 Chevron U.S.A., Inc. All Rights Reserved.

Agenda

- Objective
- Geologic Targets & Modifiers
- Directional Software Target Shapes
- Position Uncertainty Components
- Target Erosion
- Vertical Uncertainty
- Management

Objective

- Summarize
 - Target sizing
 - Objective of target sizing
 - Requirements for target sizing
- In order to
 - encourage industry standardization
 - provide an educational resource

© 2015 Chevron U.S.A., Inc. All Rights Reserved.

Geologic Target

 A simplification of the reservoir target that can be used for geometric well-planning

Layer within a sequence

© 2015 Chevron U.S.A., Inc. All Rights Reserved.

Geologic Target

- Layer / Lithology
- Location
- Layer / Lithology & Location

- Top Sheepcamp A
- Base Sheepcamp A

Geologic Target

- Location
- Layer / Lithology
- Location & Layer / Lithology

Geologic Target Modifiers

- Geologic Fault
- Lease Boundary
- Offset Well

Directional Software Target Shapes

- Generally
 - Simplify true geologic target shape into a geometric description
 - Point
 - 2D; Square, Rectangle, Circle, Ellipse, Polygon (2D)
 - ► Tilt by dip angle, oriented by strike
 - 3D; Extrusion (vertically, orthogonally)

Chevror

8

Positional Uncertainty

- Sources
 - Wellhead position measurement
 - Wellbore position
 - Geologic target position uncertainty

 \checkmark

 $\mathbf{\nabla}$

×

Simple Driller's Target

- Subtract Lateral uncertainty from sides
- Subtract Radial Uncertainty from front & back

Consequences of Missed Target

- Inefficient development of reserves
 - Positional Uncertainty confidence level
 - Commensurate with acceptance of risk

Target	1 sigma	2 sigma	3 sigma
Layer (1D)	68.2%	95.4%	99.7%
Top (2D)	39%	86%	99%
Shape (3D)	20%	74%	97%

 Target sizing confidence level is independent of collision avoidance confidence level

- The act of reducing the geologic target to the driller's target taking account of wellbore positional uncertainty at the target location
 - 1D / layer ; subtract vertical positional uncertainty from target top and bottom depths, narrowing the target TVD window.
 - 2D with depth confirmation (geologic correlation); subtract lateral uncertainty from the target's lateral bounds and radial uncertainty from the target's displacement boundaries.
 - 2D without depth confirmation ; subtract lateral uncertainty from the target's lateral bounds and *(high side uncertainty/cosine [wellbore inclination at target])* from the target's displacement boundaries.
 - 3D ; subtract lateral uncertainty from the target's lateral bounds, radial uncertainty from the target's displacement boundaries, and vertical uncertainty from the target's top and bottom boundaries
- The algorithm for target erosion is complex and relies on computer software. The above is only guidance

Role of Vertical Uncertainty

• Without depth confirmation vertical uncertainty has significant erosion

Chevron

Target Intersection Management

Chevron

- Investigate a target extension before incurring additional expense
- Investigate methods to improve PU or confirm geologic position before POOH

Geosteering

- Aid to rather than replacement for target sizing
 - Need assurance of intersecting targeted reservoir
- Poor integration between target sizing and geosteering
 - Integration with incremental positional uncertainty similar to magnetic ranging for relief wells
 - Issues
 - Attitude is dominant requirements
 - Focus on TVD however lateral positioning is often a requirement
 - Wellbore position v wellbore position characterization
 - Continuous data from distant sensors

Summary

- Requirements
 - Simplified geologic target description
- Objective
 - Assurance of having met the well's value based well objectives
- Method
 - Root Sum of Squares of wellbore and wellhead positional uncertainty
 - Select confidence level appropriate for risk consequences
 - Identify soft boundaries & hard lines
 - Select method based on target dimensionality
 - Include vertical uncertainty if no depth confirmation