

Global Geomagnetic Field Models from DMSP Satellite Magnetic Measurements Patrick Alken Stefan Maus Arnaud Chulliat Manoj Nair Adam Woods

National Geophysical Data Center, NOAA, Boulder, CO, USA

ISCWSA Meeting

- Background
- Satellite missions for geomagnetic modeling
- DMSP data calibration
- DMSP model validation
- High Definition Geomagnetic Model (HDGM)

Background of geomagnetic field

Main field

Disturbance field

- February 1999 present
- 640-850 km altitude
- Inclination: 96.5°
- Provides only scalar data since 2005 due to star camera failure

CHAMP mission

- July 2000 September 2010
- 450 km initial altitude
- Drifts rapidly in local time
- Inclination: 87.3°
- Scalar and vector magnetometers
- 2-head star camera

NNA

Swarm mission

- Successful launch in November 2013
- 3-satellite constellation (A,B,C)
- Inclination:
 - A/B: 87.4°
 - C: 88°
- Period: 90 minutes
- Altitude:
 - A/C: 460km
 - B: 510km
- 3-head star camera
- Scalar and vector magnetometers

DMSP mission

- 5 satellites with boom mounted magnetometers: F15-F19
- Circular, sun synchronous orbits
 - F15: 6am/6pm
 - F16: 8am/8pm
 - F17: 5:30am/5:30pm
 - F18: 8am/8pm
 - F19: 8:30am/8:30pm
- Inclination: 98.8°
- Period: 102 minutes
- Altitude: 850 km
- Vector magnetometer only
- Operational mission: magnetic measurements are not research quality

DMSP data: residuals along orbit

8

- Nearly every orbit of DMSP contains data jumps as shown in the figure
- Jumps could be due to various instruments turning on/off (heaters, solar panels, torquers,etc)

scalar residual (nT)

- Jumps could be artifacts from previous calibrations from ground station
- These jumps must be carefully removed as they significantly affect the calibration

Sample orbit residuals for F18

۲

F15 timing shift

 $\epsilon(\delta t) = \sum_{i} \left[F_{i} - F^{main}(\mathbf{r}(t_{i} + \delta t)) \right]^{2}$

 Very important for fastmoving satellites, as the field can change by several nT

Calibration: Timing shift

0.1

Scalar Calibration

- Scale factors: S_x, S_y, S_z
- Offsets: O_x, O_y, O_z
- Non-orthogonality angles: $\alpha_{xy}, \alpha_{xz}, \alpha_{yz}$

$$\mathbf{B} = \begin{pmatrix} S_x & \cos \alpha_{xy} & \cos \alpha_{xz} \\ 0 & S_y & \cos \alpha_{yz} \\ 0 & 0 & S_z \end{pmatrix} \mathbf{E} + \begin{pmatrix} O_x \\ O_y \\ O_z \end{pmatrix}$$
$$\epsilon(\mathbf{S}, \mathbf{O}, \alpha) = \sum_i \left[|\mathbf{B}(\mathbf{E}_i; \mathbf{S}, \mathbf{O}, \alpha)| - F^{main}(\mathbf{r}(t_i + \delta t)) \right]^2$$

2010

2010

Scale factor Z

2009

2009

2011

2011

2012

F15

F16

F17

F18

2012

2010

Offset Z

F15 F16

F17

F18

2012

150

100

50

Ω

-50

-100

-150

150

100

50

0

-50

-100

-150

2008

0_Z (nT)

2008

2009

2009

O_Y (nT)

2013

2013

Offset X

1.005

0.995

0.99

1.01

1.005

0.995

0.99

2008

2008

Š

Sz

2013

F15 F16

F17

2012

2011

2010

Euler Angles

Transform measurement vector from instrument frame to satellite frame (and then to geocentric frame)

$\mathbf{B}^{geocentric} = TR_x(\alpha)R_y(\beta)R_z(\gamma)\mathbf{B}^{magnetometer}$

ISCWSA Meeting

Calibrated DMSP residuals

F16 2010 calibrated residuals

- degree 15 spherical harmonic model for main field
- Data selection criteria
 - Data period: January 2009 through December 2013
 - Night time data (between 1800 and 0600 LT)
 - Selected times with low Dst and Kp indices, to minimize the influence of external fields

DMSP validation with Ørsted

- Ørsted scalar data from January 2013 to June 2013
- Subtracted DMSP main field model with external field from Ørsted data
- RMS difference = 12.1 nT over the globe

DMSP validation with Swarm C

High Definition Geomagnetic Model

- Main field
- Secular variation
- Crustal field to degree 720
- Basic model for external field
- Error estimates using ISCWSA error model

Datasets used:

- CHAMP (2000-2010)
- DMSP (2011-2015)
- Aeromag surveys
- Marine surveys
- IGRF (1980-1999)

Model updated annually http://www.ngdc.noaa.gov/geomag/hdgm.shtml

NOAA

HDGM comparison with ground observatories

- Secular variation comparison with MBO observatory in Senegal
- Years 2000-2010 based on CHAMP, aeromag, marine data
- Years 2011-2015 based on DMSP, aeromag, marine data
- Very important to update the HDGM yearly due to sudden changes in secular variation

Annual change in eastward component

HDGM Software

a nign Denn							
ile <u>H</u> elp							
Deg/Min/Sec	Degrees U	тм				Depth below	v: Ellipsoid
Latitude Decimal De	grees:	0	North	Depth 5000		Meters	C Feet
Longitude Decimal De	grees:		East	Traditiona Date	Decimal	_	
130.2			vvest		2014		
130.2			Calcu	late	F Google Map	Eull model resol	ution of 28 Km
130.2	Total Field	Horizontal	Calcu	late	F Google Map Vertical	Eull model resolution	ution of 28 Km Inclination
Values	Total Field	Horizontal 29,480 nT	North 29,155 nT	late East -4366 nT	F Google Map Vertical 41,011 nT	Declination -8.52°	ution of 28 Km Inclination 54.29°
Values	Total Field 50,507 nT 44.0 nT	Horizontal 29,480 nT -27.6 nT	Calcu North 29,155 nT -33.6 nT	East -4366 nT -38.3 nT	F Google Map Vertical 41,011 nT 74.0 nT	Declination -8.52° -0.08°	ution of 28 Km Inclination 54.29° 0.07°
Values Change/year Errors	Total Field 50,507 nT 44.0 nT 106.6 nT	Horizontal 29,480 nT -27.6 nT 132.9 nT	Calcu North 29,155 nT -33.6 nT 133.7 nT	East -4366 nT -38.3 nT 167.2 nT	F Google Map Vertical 41,011 nT 74.0 nT 120.9 nT	Declination -8.52° -0.08° 0.33°	ution of 28 Km Inclination 54.29° 0.07° 0.16°
Values Change/year Errors	Total Field 50,507 nT 44.0 nT 106.6 nT	Horizontal 29,480 nT -27.6 nT 132.9 nT Longitu	Calcu North 29,155 nT -33.6 nT 133.7 nT ide True-M	East -4366 nT -38.3 nT 167.2 nT agnetic Tri	F Google Map Vertical 41,011 nT 74.0 nT 120.9 nT Je-Grid Gr	Declination -8.52° -0.08° 0.33°	Inclination 54.29° 0.07° 0.16° Grid-True

- Provides field values, secular variation and error estimates for a given location and time
- We also provide a console program and excel interface to perform batch calculations of field values
- 1σ error estimates from ISCWSA error model

HDGM resolution mask

HDGM Resolution

Grey areas: HDGM has the full model resolution of 28 km, based on sufficient coverage by ship and airborne magnetic surveys.

Red areas: HDGM has a reduced resolution of 130 km, based on satellite data only.

Error estimates take into account full/reduced resolution regions

- DMSP dataset has been calibrated for geomagnetic field modeling
- DMSP-based models have been validated with independent data from Ørsted, Swarm, and ground observatories
- HDGM2014 has been released and validated
 - New coverage extending back to 1980 and forward to end of 2015
 - Years 2011-2015 updated with more accurate models from DMSP
 - New field error estimates provided using ISCWSA error model
- More information about HDGM: http://www.ngdc.noaa.gov/geomag/hdgm.shtml