East-West Exclusion Zones: Why Do We Have Them and How Can We Eliminate Them?

Chad Hanak, Ph.D.

Wellbore Positioning Technical Section

Speaker Information

- September 22, 2016

舀 Superiar \boldsymbol{L}^{2}

Actionable information in seconds

Wellbore Positioning Technical Section

Why Exclusion Zones?

Problem With Drilling East/West

- Axial Magnetic Interference (AMI) is dominant error source (AZ)
- 50% more error than Declination

Problems With the Corrections

- Multiple solutions
- Degraded accuracy

Available Corrections

- Single Station Correction (SSC)
- Multi-Station Analysis (MSA)

Exclusion Zones for Horizontal Wells

Existing Standards (SPE 125677):
BGGM Exclusion Zone

- BGGM
- $\sin (I n c)^{*} \sin (A z)<0.82$
- $\pm 35^{\circ}$ from East/West
- IFR1
- $\sin (\operatorname{lnc})^{*} \sin (A z)<0.91$
- $\pm 25^{\circ}$ from East/West

Multiple Solutions: SSC

Single Station Correction

- B_{x} and B_{y} are measured

Measured Value of $\left(B_{x}, B_{y}\right)$

Multiple Solutions: SSC

Single Station Correction

- B_{x} and B_{y} are measured
- B_{x} and B_{y} are modeled as a function of Az using:
- Reference Bt
- Reference Dip
- Measured Inc
- Measured TF
$\left(B_{x}, B_{y}\right)$ as a Function of $A z$

Multiple Solutions: SSC

Single Station Correction

- B_{x} and B_{y} are measured
- B_{x} and B_{y} are modeled as a function of $A z$
- Minimum distance between model and measurement is found
$\left(B_{x}, B_{y}\right)$ as a Function of $A z$

Multiple Solutions: SSC

Single Station Correction

- B_{x} and B_{y} are measured
- B_{x} and B_{y} are modeled as a function of $A z$
- Minimum distance between model and measurement is found

Distance from Meas. to Model

Multiple Solutions: SSC

What to Do?

- Consider uncertainty on
- Reference Bt
- Reference Dip
- Measured Inc
- Measured TF

Uncertainty

Multiple Solutions: SSC

What to Do?

- Consider uncertainty
- Map into X^{2} test
- Reject minima w/ a probability of occurrence of < 0.1\%
- If multiple minima remain, cannot trust solution

Distance as X^{2} Statistic

Multiple Solutions: SSC

Alternate Example

- Only 1 probabilistically plausible solution
- Ok to move forward with valid solution

Multiple Solutions: MSA

Similar to SSC

- Multiple solutions can exist
- Not true that MSA can automatically replace SSC in an exclusion zone
- Variation in wellbore direction can resolve
- Required amount of variation is situationdependent

Degraded Accuracy: SSC

Correction Not as Accurate as Standard MWD IPM near East/West

- Specific IPM derived to model accuracy of correction ('+AX')
- Accounts for effects of magnetic reference field errors

Degraded Accuracy: SSC

MWD+AX IPM

No	Code	Term Description	Wt.Fn.	Wt.Fn. Source	Type	Magnitude	Units	Prop.	P1	P2	P3	Wt.Fn. Comment
16	DECG	MWD: Declination - Global	AZ	SPE 67616	Azi Ref	0.36	deg	G	1	1	1	
17	DECR	MWD: Declination - Random	AZ	SPE 67616	Azi Ref	0.1	deg	R	0	0	0	
18	DBHG	MWD: BH-Dependent Declination - Global	DBH	SPE 67616	Azi Ref	5000	deg.nT	G	1	1	1	
19	DBHR	MWD: BH-Dependent Declination - Random	DBH	SPE 67616	Azi Ref	3000	deg.nT	R	0	0	0	
20	MDIG	MWD: Magnetic Dip with Z-Axis Corr - Global	MDI	SPE 67616 Table 1	Mgntcs	0.2	deg	G	1	1	1	
21	MDIR	MWD: Magnetic Dip with Z-Axis Corr - Random	MDI	SPE 67616 Table 1	Mgntcs	0.08	deg	R	0	0	0	
22	MFIG	MWD: Total Magnetic Field with Z-Axis Corr - Global	MFI	SPE 67616 Table 1	Mgntcs	130	nT	G	1	1	1	
23	MFIR	MWD: Total Magnetic Field with Z-Axis Corr - Random	MFI	SPE 67616 Table 1	Mgntcs	60	nT	R	0	0	0	
24	SAG	MWD: Sag	SAG	SPE 67616	Align	0.2	deg	S	1	0	0	
25	XYM1	Misalignment: XY Misalignment 1	XYM1	SPE 90408 Table 9 - Alt. 3	Align	0.1	deg	S	1	0	0	
26	XYM2	Misalignment: XY Misalignment 2	XYM2	SPE 90408 Table 9 - Alt. 3	Align	0.1	deg	S	1	0	0	
27	XYM3	Misalignment: XY Misalignment 3	XYM3	SPE 90408 Table 9 - Alt. 3	Align	0.1	deg	S	1	0	0	Singularity when vertical
28	XYM4	Misalignment: XY Misalignment 4	XYM4	SPE 90408 Table 9 - Alt. 3	Align	0.1	deg	S	1	0	0	Singularity when vertical

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Degraded Accuracy: MSA

More Complicated Version of SSC

- 100+ different possible parameter combinations
- Each solution will have a different accuracy
- Would require 100+ different IPM's to model

Wellbore Positioning Technical Section

Degraded Accuracy: MSA

MWD+IFR1+MS IPM

No	Code	Term Description	Wt.Fn.	Wt.Fn. Source	Type	Magnitude	Units	Prop.	P1	P2	P3	Wt.Fn. Comment
17	MSZ	MWD: Z-Magnetometer Scale Factor	MSZ	SPE 67616 Table 1	Sensor	0.0008	-	S	1	0	0	
18	DECG	MWD: Declination - Global	AZ	SPE 67616	Azi Ref	0.15	deg	G	1	1	1	
19	DECR	MWD: Declination - Random	AZ	SPE 67616	Azi Ref	0.1	deg	R	0	0	0	
20	DBHG	MWD: BH-Dependent Declination - Global	DBH	SPE 67616	Azi Ref	1500	deg.nT	G	1	1	1	
21	DBHR	MWD: BH-Dependent Declination - Random	DBH	SPE 67616	Azi Ref	3000	deg.nT	R	0	0	0	
22	AMIL	MWD: Axial Interference - ${ }^{\text {mima }}$	MIL	Hallj	Mgntcs	100	nT	S	1	0	0	
23	SAG	MWD: Sag	AG	SPE 6761	Align	0.2	deg	S	1	0	0	
24	XYM1	Misalignment: XY Misalignm nt 1	XYM1	SPE 90^08 Table 9 - Alt. 3	Align	0.1	deg	S	1	0	0	
25	XYM2	Misalignment: XY Misalignment 2	XYM2	SPE 90408 Table 9 - Alt. 3	Align	0.1	deg	S	1	0	0	
26	XYM3	Misalignment: XY Misalignment 3	XYM3	SPE 90408 Table 9 - Alt. 3	Align	0.1	deg	S	1	0	0	Singularity when vertical
27	XYM4	Misalignment: XY Misalignment 4	XYM4	SPE 90408 Table 9 - Alt. 3	Align	0.1	deg	S	1	0	0	Singularity when vertical

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Degraded Accuracy: MSA

What Can We Do?

- '+MS' error model does not model the accuracy of MSA corrections
- No published requirements exist to check for valid use
- Best option is to calculate accuracy directly for chosen solution

Solution EOU vs. ‘+MS’ EOU

Drilling Safely East/West

If AMI corrections are required:

- Check for multiple solutions
- Ensure IPM assigned to corrected surveys does not overstate accuracy

MSA Exclusion Zone for Horizontal Wellbores: $\pm 15^{\circ}$

Eliminating the Exclusion Zone

Including Part of the Build in the Lateral:

- Start lateral at 80º Inclination
- Exclusion Zone is $\pm 5^{\circ}$
- Start lateral at 70° Inclination
- Exclusion Zone is eliminated

Conclusion

- Axial Magnetic Interference (AMI) maps into large Azimuth errors when drilling East/West
- SSC \& MSA have problems
- Multiple solutions
- Degraded accuracy
- Can reduce $\pm 35^{\circ}$ exclusion zone by
- Checking probabilistic plausibility of extra solutions
- Validating target IPM against calculated accuracy of corrections (MSA)

