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The Earth’s magnetic field
• Most of the field is from the Earth’s core

− varies slowly with time (months to years)
• Local fields from magnetized rocks in Earth’s crust

− relatively stable with time
• Fields due to currents in the ionosphere and magnetosphere

− variations from seconds to years

CoreIonosphere-
Magnetosphere

Crust 
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Observatories – Bexternal(r, t)Global model - Bmain(r, t)

Local model
Bcrust(r)

Reconstructing the magnetic 
field vector at the drill site

B = Bmain(r, t) + Bexternal(r, t) + Bcrust(r)
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Sources and errors

Reference field vector for drilling = B + ε

1. Ideally, account for all sources

B1 = Bmain + Bcrust + Bexternal

ε1 =  εmain + εcrust + εexternal

2. If external fields are ignored

B2 = Bmain + Bcrust + 0

ε2 = εmain + εcrust + Bexternal

3. If crustal and external fields are ignored

B3 = Bmain +  0 + 0

ε3 = εmain + Bcrust + Bexternal

Each source is modelled 
or observed in some way

Need to characterise the 
statistical nature of the 

errors

Need to characterise the 
statistical nature of the 

errors and signal
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All global main field models capture some of 
the crustal field…
• Novel weighting 

methods applied to 
satellite data

• Vector data at all 
latitudes

• Low-noise lithospheric 
field model

• Piecewise linear SV
• External dipole 

magnetic field with 
VMD index rapid time-
dependence

A. W. P. Thomson, B. Hamilton, S. Macmillan & 
S. J. Reay. A Novel Weighting Method for 
Satellite Magnetic Data and a New Global 
Magnetic Field Model. Geophys. J. Int., 2010.
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…but local observations in vicinity 
of drilling site complete the picture

• Direct measurements of the vector field
− on land
− at sea

• Direct measurements of the scalar field
− inversions for source properties followed by 

forward modelling
− transformations
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Direct measurements of the vector 
field on land

Canadian images courtesy of Halliburton

UK
Canada
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Direct measurements of the vector 
field at sea

Platform: The Adventurer - holder of the 
record for the fastest circumnavigation of 
the globe – reasonably non-magnetic

Instruments: Vector and scalar 
magnetometers, ring-laser gyro and GPS

A collaborative project between 
Tech21 and BGS
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Typical marine vector survey

10 km by 10 km
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Direct measurements of the scalar 
field

image courtesy of Sander Geophysics

image courtesy of Fugro

image courtesy of PGS
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Typical aeromagnetic survey

100 km by 100 km
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Aeromagnetic data processing

sometimes some channels 
are missing

model not always specified
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Validation of scalar data for 
gross errors, noise content and 
absolute level
• check coordinates
• check base station data
• check model
• check processing e.g. compare data 

channels
• compare with independent data
• downward and upward continuation
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Assumptions with scalar data

Scalar magnetometer measures | Bo|
Total intensity anomaly defined as ΔF = | Bo| - | Bm|
This is not the same as | Bc|

Bm = (Xm, Ym, Zm) estimated from a global model

If crustal field is small compared to main field (200 nT cf 50000 nT), ΔF is well 
approximated by the projection of crustal field vector onto the main field vector

ΔF ≈ (XcXm + YcYm + ZcZm)/Fm equation (1)

Bm

Bc

Bo

~ΔF

not to scale
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Inversions of scalar data

∫ ψ=
R

dvQPQMPV ),()()(
Magnetic potential at 
point P (outside R) region containing magnetic sources

Magnetisation at point Q

Geometrical 
function 

relating points 
P and Q

Q

P

Magnetic rock (region R)

Inverse problem

Forward problem
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Observed anomaly, ΔF

Seismically-determined depth 
to magnetic basement

Inversions of scalar data

• Assume magnetisation 
induced by main field

• Assume magnetisation does 
not vary with depth

• Determine top surface of R 
from seismic data 
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Transformations of scalar data
Applications of Fourier transformation techniques

IN: F anomalies at surface
OUT: D and I anomalies at surface

D, I and F anomalies at depth
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Transformations of scalar data
Applications of Fourier transformation techniques

D anomalies at surface and at depth 4 kmF anomalies at surface
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Scalar to vector transformations

ΔF also satisfies Laplace’s equation and can be written as 
(assuming data collected at constant altitude):

∫ ∫
∞
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A solution to Laplace’s equation is:

Bc = (Xc,Yc, Zc) is the gradient of a scalar potential Vc
which satisfies Laplace’s equation

Use equation (1) linking ΔF and Bc to get an expression for A(u,v) in 
terms of C(u,v)

Fewer assumptions about the geometrical or magnetic 
properties of the sources than with inversions

02 =∇ cV
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Small error in                   with large u,v (short wavelengths) 
results in large errors in                  Consequence is high 
amplitude and short wavelength noise in resulting anomalies     

Equivalent filter operator but with damping (parameter λ):
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Downward continuation
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Validation of downward continuation
Compare damped downward-continued anomalies 
which are then upward-continued, with input data 

survey 
boundary

sampling 
noise

high gradients

differences 
in drilling 
area small

depth 4 km 
differences in nT
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BP Miller field - small F anomaly 
does not mean small D anomaly

D anomalies at surface and at depth 4 kmF anomalies at surface
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BP Miller field – D anomalies 
from marine vector survey agree
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Downward continuation

declination inclination total intensity
surface -0.497 -0.035 -56.2
depth 4 km -0.751 -0.026 -68.6
difference 0.254 -0.009 12.4

BP Miller – effect of downward continuation
4 km ~ max drilling depth

(declination and inclination in degrees, total intensity in nT)
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Sources and errors

Reference field vector for drilling = B + ε

1. Ideally, account for all sources

B1 = Bmain + Bcrust + Bexternal

ε1 =  εmain + εcrust + εexternal

2. If external fields are ignored

B2 = Bmain + Bcrust + 0

ε2 = εmain + εcrust + Bexternal

3. If crustal and external fields are ignored

B3 = Bmain +  0 + 0

ε3 = εmain + Bcrust + Bexternal
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Estimating εmain + εcrust
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Confidence levels

• Should not use multiples of σ and assume same 
confidence as with a normal distribution

• Confidence levels relevant for any error distribution

• Uncertainties presented as limits for confidence levels…
− 68.3% (equivalent to 1σ if normal)
− 95.4% (equivalent to 2σ if normal)
− 99.7% (equivalent to 3σ if normal)

Normal Laplacian

• Error distributions are not usually normal
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B2 = Bmain + Bcrust + 0

ε2 =  εmain + εcrust + Bexternal

εmain+ εcrust

95.4% confidence limit
D I F

0.26° 0.12° 73 nT
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Conclusions

• The crustal field Bcrust represents an offset error to 
the geomagnetic field vector from a global model

• Local magnetic observations are necessary to 
determine Bcrust and reduce errors

• Further improvement in estimates of B are possible 
with use of real-time magnetic data for external field 
Bexternal
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