UPDATE ERROR MODEL GROUP

Andy McGregor Tech21

1

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

Speaker Information

- Andy McGregor
- Chairman Error Model Maintenance Workgroup
- Survey Management Domain Champion
- Tech21/Weatherford
- 22nd September 2016

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

Speaker Bio

- Introduction
 - With Tech21 Weatherford
 - 10 years in survey management
 - Degree in Physics & Astronomy, University of Glasgow
 - PhD Space Engineering, Cranfield University
 - Based in Inverness, Scotland
 - Specialized in
 - Survey Management, multi-station analysis, IFR and error modelling

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

Error Model Update Andy McGregor

Document first draft complete - to be reviewed

Accompanied by:

The MWD error model definitions – in spreadsheet Example implementation spreadsheets on gyro test cases

Derivation of singular case of accel biases Note on lumped misalignments and scalefactors

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

Diagnostic Data Sets

Will create further validation data sets for Inclination only MWD-MWD tie-ons with latest Rev4 models Gyro-MWD tie-on

Clarifying particular gyro test results from SPE paper

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

Correlation of Error Sources

- Anti-collision method will use combining covariances
- Current combined methods simply add covariance matrices and implicitly assume all errors are uncorrelated.
- Noted that this was not strictly correct for geomagnetic reference terms

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

Correlation of Error Sources

 Current practice generally the conservative option

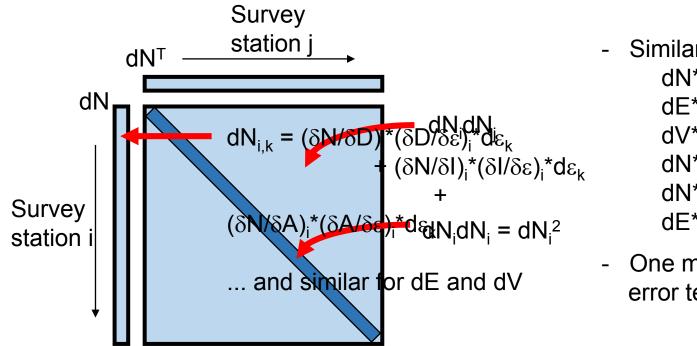
Previously decided to

- Evaluate correlation values
- Evaluate effect is this important?
- Determine how they could be handled

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

Correlation of Error Sources

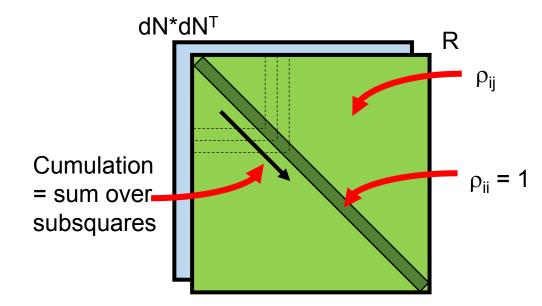
 Stefan Maus estimated correlations between declination error if two surveys depending on geomagnetic model in


Estimate of average actual correlation (Stefan's analysis)									
	IGRF	Standard	HD #1	HD #2	IFR1 #1	IFR1 #2	IFR2 #1	IFR2 #2	
IGRF	0.5	5 0.66	0.34	0.34	0.03	0.03	0.03	0.03	
Standard		0.79	0.40	0.40	0.03	0.03	0.03	0.03	
HD #1			0.68	0.49	0.04	0.04	0.04	0.04	
HD #2				0.68	0.04	0.04	0.04	0.04	
IFR1 #1					0.39	0.08	0.39	0.08	
IFR1 #2						0.39	0.08	0.39	
IFR2 #1							0.44	0.09	
IFR2 #2								0.44	

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

dN*dN^T matrix

Similar matrices for: dN*dN^T dE*dE^T dV*dV^T dN*dE^T dN*dV^T dE*dV^T

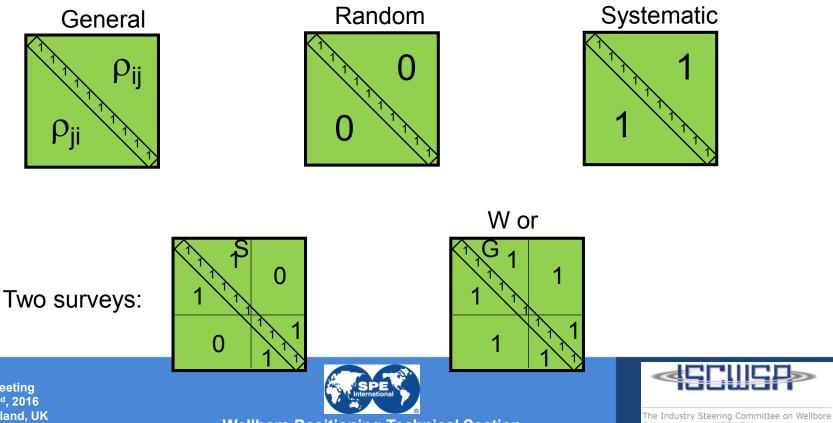

- One matrix for each error term

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

Correlation coefficient matrix

R = matrix containing correlation coefficients (of the particular error term)

Procedure:


- Multiply R onto (dN*dN^T), element by element
- Cumulate from upper left corner

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

Correlation coefficient matrix

Survey Accuracy (ISCWSA)

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

Wellbore Positioning Technical Section

Results for Partial Correlations

- Correlation seems to be important for global mag models
- In more extreme cases ellipses overestimated (parallel) or under-estimated (opposing) by ~25%
- Less so for IFR
 - Less impact of geomag ref errors
 - Lower correlation
- Some further work needed to check results and look at oblique cases

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

Simplifying Considerations

Error Model Update Andy McGregor

- Only need to consider four mag ref terms
 - DECG, DBHG, MFI, MDI
- No need to consider vertical terms
 - Hence 3 nev-covariance elements

• Likely reduced analytical equations will be determined.

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

Towards new model uncertainties

<u>Confidence Level</u>	<u>Original Declination</u> <u>Limit (</u> degrees)	<u>New Declination Limit</u> (degrees)
68.3% (1σ if Gaussian)	0.148	0.140
90%	0.419	0.411
95%	0.823	0.676
95.4% (2σ if Gaussian)	0.874	0.717
99%	1.641	1.149
99.7% (3σ if Gaussian)	2.613	1.249

 Objective is one new error look-up table (scalable 1-sigma values) for annually revised high-degree global models, ideally with all-party agreement (Using vector survey data 1985 and onwards only in both cases)

Locations of oil fields with local magnetic data

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

Long Survey Intervals

- Jerry Codling presented details of further work on effect of survey interval on well position
- · Candidate method of handling this
- Based on survey interval and angle changes across that interval
- Needed to be evaluated in an error model

Example Importance of Long Interval Models

		Standard tool	code	Survey Interval > 1000ft	
Number of Stations	Total Md	Md Fail (ft)	% fail	Md Fail (ft)	% fail
BLIND	1,793,287	1,768,232	99%	752,903	42%
MWD	15,616,069	4,807,024	31%	1,581,828	10%
MWD_SC	47,990,277	3,698,504	8%	1,166,129	2%
CBMAG	2,323,544	1,824,353	79%	698,870	30%
Total	67,723,177	12,098,113	18%	4,199,730	7%

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

Long Survey Intervals

 Steve Grindrod looked at effect of survey interval on the ISCWSA test wells and compared to error model results

0.167

- Using Compass IPM with these terms added
- #Name Vector Tie-On Value Formula Unit • DIS 0.167 r
- DLS а r

max(abs(din), 0.0033*smd)

max(abs(daz), 0.0033*smd/sin(inc+0.00001))

Effect on Test Wells

Error Model Update Andy McGregor

Error Model Update Andy McGregor

Policy that tool provider supplies error model

What evidence should back that up?

QA\QC Criteria

Process Documentation

Repeatability of test stand data

Assessment of downhole environmental factors

Multiple runs/tools downhole

Comparison with independent surveys downhole

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

Hole Misalignments

- Rev4 + OWSG increased misalignment terms
 - 0.06° to 0.1° Operators wanted more conservative values
- Previously drilled wells violating a-c
- Systematic or random propagation
 - Random not common
- Big difference in top hole
- Doubly conservative
- Dependent on BHA type
- Split terms

44th General Meeting September 22nd, 2016 Glasgow, Scotland, UK

