MWD a new approach

Angus Jamieson

Speaker Information

- Angus Jamieson
- Professor of Offshore Engineering
- September 22nd, 2016
- Member of SPE, Chartered Surveyor RICS

Speaker Bio

- Introduction
- AJ Consulting Ltd and UHI University, Inverness
- 37 years oilfield experience
- Heriott Watt Bsc in Civil Engineering, FRICS
- Live in Inverness, Scotland
- Specialized in
- Marine and Downhole Surveying
- Mathematics and Software
- Directional Drilling

Come and Study
 at UHI

24

Why wouldn't you?

New Approach Objectives

- 1. Avoid Orthogonality Issues
- 2. Allow for more sensors to be used
- 3. Make Calibrations more accurate
- 4. Speed up Calibration Process
-5. Improve MWD Accuracy

New Approach

High Side Reference

Vector

Along Hole Reference Vector

New Approach

High Side Reference

- For Example

New Approach

High Side Reference

Vector

- Microtesla 4AM

Along Hole Reference Vector

New Approach

- Find the 2 alignments for each sensor
- Alignment from along hole axis W
- Alignment from high side axis T

- Include all sensors available in the tool
- Calibrate each sensor's 2 alignments v Temperature using a 'hot' tumble and a 'cold' tumble (Use a linear interpolation for W and T at other temperatures)

New Approach

- Using actual alignments corrected at each temperature
- Set tool to inc 60, azi 0, Tf -45 , heat to 150 and record while cooling
- Set tool to inc 120, azi 180, Tf 135, heat to 150 and record while cooling
- Determine least squares best fit polynomials to correct for scale and bias
- In Instrument firmware use temperature corrected sensor data and actual alignments to produce synthetic 3 axis perfectly orthogonal data for surveys

In this diagram the length of the slope is 1 unit. The unit vector describing the along hole axis can be determined from the shifts to North, East and Vertical caused by 1 unit at inclination I, azimuth A.

Let's call the vertical shift dV.
The vertical shift $\mathrm{dV}=\cos (\mathrm{I})$
dh is the horizontal shift where $\mathrm{dh}=\sin (\mathrm{I})$
The shift to the North dN will therefore be $\mathrm{dh} \cos (\mathrm{A})$ or, in full,

$$
\mathrm{dN}=\sin (\mathrm{I}) \cos (\mathrm{A})
$$

the shift to the East dE will therefore be $\mathrm{dh} \sin (\mathrm{A})$ or, in full,

$$
\mathrm{dE}=\sin (\mathrm{l}) \sin (\mathrm{A})
$$

So an along hole axis set at inclination I, Azimuth A, has a unit vector:

$$
\begin{aligned}
& \mathrm{dE}=\sin (\mathrm{I}) \sin (\mathrm{A}) \\
& \mathrm{dN}=\sin (\mathrm{I}) \cos (\mathrm{A}) \\
& \mathrm{dV}=\cos (\mathrm{I})
\end{aligned}
$$

A unit vector to high side can be similarly defined. In this case the horizontal shift dH is 1 unit $\mathrm{x} \cos (\mathrm{l})$ and the Vertical shift is 1 unit $x \sin (l)$ but is back towards the surface so the high side unit vector in full is:

$$
\begin{aligned}
& d E=\cos (I) \sin (A) \\
& d N=\cos (I) \cos (A) \\
& d V=-\sin (I)
\end{aligned}
$$

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

For a lateral unit vector there is no vertical component so we can say:

```
dE = cos(A
dN = - sin(A)
dV = 0
```


Our X and Y axes will be orientated with the toolface angle T The X axis is normally pointing along the toolface angle with the Y axis clockwise 90 degrees. So the actual unit vector for the X axis consists of:

Highside Vector $\mathrm{x} \cos (\mathrm{T})+$ Lateral Vector $\mathrm{x} \sin (\mathrm{T})$
and similarly the actual unit vector for the Y axis consists of:
Lateral Vector $x \cos (T)$ - High Side vector $x \sin (T)$

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

In General for any sensor axis aligned at an angle W from the
 along hole axis and rotated T from the toolface we can determine the attitude vectors from the following construction:

The along hole component will be $\cos (\mathrm{W})$
The offset component will be sin(W)
This will have a high side component $\sin (\mathrm{W}) \cos (\mathrm{T})$ and a lateral component $\sin (\mathrm{W}) \sin (\mathrm{T})$

This is a useful result for axes aligned at any angle and so the unit vector for any W and T value set at Inc I, Azimuth A and Toolface Tf can be written as:
$d E=\cos (W) A e+\sin (W) \cos (T+T f) \mathrm{He}+\sin (W) \sin (T+T f) L e$ $d N=\cos (W) A n+\sin (W) \cos (T+T f) H n+\sin (W) \sin (T+T f) L n$ $d V=\cos (W) A v+\sin (W) \cos (T+T f) H v+\sin (W) \sin (T+T f) L v$
where Ae, An, Av describes the Along Hole Vector $\mathrm{He}, \mathrm{Hn}, \mathrm{Hv}$ describes the High Side Vector
Le, Ln, Lv describes the Lateral Vector

Wellbore Positioning Technical Section
$d E=\cos (W) \sin (I) \sin (A)+\sin (W) \cos (T+T f) \cos (I) \sin (a)+\sin (W) \sin (T+T f) \cos (A)$
$d N=\cos (W) \sin (I) \cos (A)+\sin (W) \cos (T+T f) \cos (I) \cos (a)+\sin (W) \sin (T+T f)-\sin (A)$
$\mathrm{dV}=\cos (\mathrm{W}) \cos (\mathrm{I})+\sin (\mathrm{W}) \cos (\mathrm{T}+\mathrm{Tf})-\sin (\mathrm{i})$
so any accel will read the dot product of this vector with the gravity field vector
i.e. $d e \times 0+d n \times 0+\cos (W) \cos (I)-\sin (W) \cos (T+T f) \sin (I) . g$
each accel contributes an equation $\cos (\mathrm{W}) \cos (\mathrm{I})-\sin (\mathrm{W}) \cos (\mathrm{T}+\mathrm{Tf}) \sin (\mathrm{I}) . \mathrm{g}=$ Accel observation Unknowns are Tf and I so a least squares best fit Toolface and Inclination can be found
therafter any magnetometer will read the dot product with magnetic field vector
i.e. de $x 0+[\cos (W) \sin (I) \cos (A)+\sin (W) \cos (T+T f) \cos (I) \cos (A)-\sin (W) \sin (T+T f) \sin (A)] B t \cos (D i p)+$ $[\cos (W) \cos (I)-\sin (W) \cos (T+T f) \sin (I)] B t \sin ($ dip $)=$ Mag Observed

At this stage the only unknowns are $\sin (A)$ and $\cos (A)$ which can be solved by oversubscribed simultaneous equations for a least squares best fit azimuth.

Glasgow, Scotland, UK

Calibration Tumbles

- Set to room temperature
- Set multiple toolfaces, inclinations and azimuths on known orientations (minimum 12)
- Record raw data from all sensors and temperature
- Apply monte carlo scale, bias, T alignment and W alignment to minimise the sum of the errors squared
- Use W and T corrected for temperature
- Calculate the unit vector for the sensor in N, E, V
- Error = dot product with observed field - observed value
- Sum of errors ${ }^{\wedge} 2$
- Repeat at 'hot' value say 150 degs C

September $22^{\text {nd }}, 2016$
Glasgow, Scotland, UK
Wellbore Positioning Technical Section

Use linear fit on T and W for all other temperatures

Temperature

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Cooling Curves

- Set inc 60, azi 0, tface -45
- heat to 150 and record while cooling
- Set inc 120, azi 180, tface 135
- heat to 150 and record while cooling

These two orientations will provide enough data to fit a scale and bias polynomial fit through the cooling curves

Typical Cooling Curve Fit

$$
C=\text { Correct Sensor Value } \quad V=\text { observed Value } \quad t=\text { temperature }
$$

Each observed value contains a temperature affected scale and bias as follows
Scale $=\mathrm{at}^{3}+\mathrm{bt}^{2}+\mathrm{ct}+\mathrm{d} \quad$ Bias $=\mathrm{et}^{3}+\mathrm{ft}^{2}+\mathrm{gt}+\mathrm{h}$
where a, b, c, d and e, f, g, h are polynomial coefficients applied to temperature to fit the scale and bias effects respectively
so in all observations of each sensor the following relationship applies
$\mathrm{V}=\mathrm{C}\left(\mathrm{at}{ }^{3}+\mathrm{bt}{ }^{2}+\mathrm{ct}+\mathrm{d}\right)+\mathrm{et}^{3}+\mathrm{ft}^{2}+\mathrm{gt}+\mathrm{h}$
in matrix form each observed value contributes a row of the simultaneous equations:

As these will be heavily ovsersubscribed by including the data gathered during the cooling curves, we can premultiply the power matrix and the observation matrix by the transpose of the power matrix to achieve a least squares best fit for parameters a - h

This reduces to the fully subscribed simultaneous equations matrices below
$\left[\begin{array}{llllllll}\Sigma C^{2} t^{6} & \Sigma C^{2} t^{5} & \Sigma C^{2} t^{4} & \Sigma C^{2} t^{3} & \Sigma C t^{6} & \Sigma C t^{5} & \Sigma C t^{4} & \Sigma C t^{3} \\ \Sigma C^{2} t^{5} & \Sigma C^{2} t^{4} & \Sigma C^{2} t^{3} & \Sigma C^{2} t^{2} & \Sigma C t^{5} & \Sigma C t^{4} & \Sigma C t^{3} & \Sigma C t^{2} \\ \Sigma C^{2} t^{4} & \Sigma C^{2} t^{3} & \Sigma C^{2} t^{2} & \Sigma C^{2} t & \Sigma C t^{4} & \Sigma C t^{3} & \Sigma C t^{2} & \Sigma C t \\ \Sigma C^{2} t^{3} & \Sigma C^{2} t^{2} & \Sigma C^{2} t & \Sigma C^{2} & \Sigma C t^{3} & \Sigma C t^{2} & \Sigma C t & \Sigma C \\ \Sigma C t^{6} & \Sigma C t^{5} & \Sigma C t^{4} & \Sigma C t^{3} & \Sigma t^{6} & \Sigma t^{5} & \Sigma t^{4} & \Sigma t^{3} \\ \Sigma C t^{5} & \Sigma C t^{4} & \Sigma C t^{3} & \Sigma C t^{2} & \Sigma t^{5} & \Sigma t^{4} & \Sigma t^{3} & \Sigma t^{2} \\ \Sigma C t^{4} & \Sigma C t^{3} & \Sigma C t^{2} & \Sigma C t & \Sigma t^{4} & \Sigma t^{3} & \Sigma t^{2} & \Sigma t \\ \Sigma C t^{3} & \Sigma C t^{2} & \Sigma C t & \Sigma C & \Sigma t^{3} & \Sigma t^{2} & \Sigma t & \Sigma 1\end{array}\right] \quad\left[\begin{array}{l}a \\ b \\ \mathrm{~b} \\ \mathrm{C} \\ d \\ e \\ \mathrm{f} \\ \mathrm{g} \\ h\end{array}\right]=\left[\begin{array}{l}\Sigma V C t^{3} \\ \Sigma V C t^{2} \\ \Sigma V C t \\ \Sigma V C \\ \Sigma V t^{3} \\ \Sigma V t^{2} \\ \Sigma V t \\ \Sigma V\end{array}\right]$

'Nominal' Sensor Orientations Loaded from File

Measurements Pasted from Excel

Glasgow, Scotland, UK

Calibration of Accelerometers

Sensor	Temperature (${ }^{\circ} \mathrm{C}$)	w (${ }^{\text {c }}$)	t (${ }^{\text {\% }}$)	Scale Factor	Bias (G)	EError ${ }^{2}$	
© Accelerometer Magnetometer	175.0	-0.1980	0.2004	1.0189	0.00180	$1.069 \mathrm{e}-5$	
	150.0	-0.1955	0.2023	1.0176	0.00211	$2.608 \mathrm{e}-5$	
Lateral	125.0	-0.1993	0.2116	1.0153	0.00188	$7.356 \mathrm{e}-6$	
	100.0	-0.1916	0.2429	1.0134	0.00242	$2.953 \mathrm{e}-5$	
	75.0	-0.2004	0.2169	1.0112	0.00141	$9.938 \mathrm{e}-6$	
	25.0	-0.1986	0.2416	1.0069	0.00039	$5.813 \mathrm{e}-6$	
\square MWD Calibration $\square_{\text {- }}$							
Sensor	Temperature (${ }^{\circ} \mathrm{C}$)	w (${ }^{\circ}$)	$\mathrm{t}{ }^{\circ}$)	Scale Factor	Bias (G)	\sum Error ${ }^{2}$	
(O) Accelerometer Magnetometer	175.0	-0.0458	-0.1862	1.0141	0.00383	5.416e-6	
	150.0	-0.0266	-0.0910	1.0126	0.00367	$5.713 \mathrm{e}-6$	
Highside	125.0	-0.0228	-0.2006	1.0103	0.00398	$4.741 \mathrm{e}-6$	
	100.0	-0.0059	-0.1738	1.0083	0.00406	$2.875 \mathrm{e}-5$	
	75.0	-0.0191	-0.1119	1.0059	0.00375	$1.644 \mathrm{e}-5$	
	25.0	-0.0084	-0.1774	1.0016	0.00430	$3.082 \mathrm{e}-6$	
■ MWD Calibration							
Sensor	Temperature (${ }^{\circ} \mathrm{C}$)	w (${ }^{\circ}$)	t (${ }^{\text {\% }}$)	Scale Factor	Bias (G)	EError ${ }^{2}$	
(Accelerometer Magnetometer	175.0	-0.1210	84.7656	1.0153	-0.00484	$1.026 \mathrm{e}-5$	
	150.0	-0.1151	78.1250	1.0138	-0.00344	$1.005 \mathrm{e}-5$	
Along-hole	125.0	-0.1093	86.3281	1.0112	-0.00297	$1.105 \mathrm{e}-5$	
	100.0	0.1083	-84.3750	1.0090	-0.00305	$9.337 \mathrm{e}-6$	
	75.0	-0.1059	87.8906	1.0067	-0.00188	$1.218 \mathrm{e}-5$	
	25.0	0.1170	-83.5938	1.0026	-0.00125	$7.766 \mathrm{e}-6$	

Wellbore Positioning Technical Section

Glasgow, Scotland, UK

Calibration of Magnetometers

Solve the simultaneous equations using all available data (inc. cold and hot tumbles)

For Each sensor

- W Alignment is then the actual Alignment from along hole corrected for temperature
- T Alignment is then the actual Alignment from Toolface corrected for temperature
- Scale is $a t^{\wedge} 3+b t^{\wedge} 2+c t+d$
- Bias is et ${ }^{\wedge} 3+\mathrm{ft}^{\wedge} 2+\mathrm{gt}+\mathrm{e}$
- True observation = (observed - bias) $/$ Scale

Use the T and W vectors to find the inclination, azimuth and toolface that best fit all the observed values by minimising the errors squared.
Finally:
Calculate the theoretical raw readings you would have seen had their been no scale, bias or misalignment from a true orthogonal set of sensors and pulse these to surface.

Advantages

- Much shorter calibration time
- Greater accuracy in the result
- Uses all available sensors in the angles calculation
- Same process regardless of number of sensors
- Same output (perfectly orthogonal raw data or inc azi tface)
- No change to field procedures

