Directional surveying in the Norwegian Sea

Morten Gjertsen 10. May 2012

Advancing Reservoir Performance Baker Hughes Incorporated

The Skarv Idun Development

Skarv

Latitude: 65.7 deg north Longitude: 7.6 deg east Distance to coast line: ~200km

Advancing Reservoir Performance

Baker Hughes Incorporated

Sweden

©2009 Baker Hughes Incorporated. All Rights Reserved

Earth's Magnetic Field - components

Earth's magnetic field - Main characteristics

Advancing Reservoir Performance Baker Hughes Incorporate

The Northern Lights zone

The Northern Lights oval

Advancing Reservoir Performance

Baker Hughes Incorporated

2009 Baker Hughes Incorporated. All Rights Reserved.

Auroral electrojet

Auroral electrojet's effect on the magnetic field

Auroral electrojet's effect on the magnetic field

Magnetic storm on 6th August 2011

Station	Geomagnetic Latitude	Geomagnetic Longitude	Error m	Error model disturba		
Dønna	63.4	95.8	D	(30) at	Dønna F	
Solund	58.5	86.1	0.45	0.18	147	

Magnetic field behaviour- Hypothesis

Advancing Reservoir Performance

The Magnetic field at drill site

We assume the disturbance is the same onshore and offshore:

$$\Delta \mathbf{B}_1 \thicksim \Delta \mathbf{B}_{\mathrm{S}}$$

and get:

$$\underline{\mathbf{B}}_{\underline{\mathbf{S}}} = \mathbf{Q}_{\underline{\mathbf{S}}} + \Delta \mathbf{B}_{\underline{1}}$$

Offshore:

 $B_s = Q_s + \Delta B_s$

 Q_s : the undisturbed part ΔB_s : the disturbance part

The undisturbed part

 $Q_s = Global \mod + Crust$

Onshore variometer:

$$\mathbf{B}_{1} = \mathbf{Q}_{1} + \Delta \mathbf{B}_{1}$$

$$\mathbf{B}_{1} : \text{Variometer output}$$

$$\mathbf{Q}_{1} : \text{Corresponds to the offshore } \mathbf{Q}_{s} \text{ (ideally)}$$

$$\Delta \mathbf{B}_{1} = \mathbf{Q}_{1} - \mathbf{B}_{1}$$
(long term drift and Secular Variations accounted for)

Advancing Reservoir Performance

Testing the Hypothesis

Advancing Reservoir Performance

Baker Hughes Incorporated

©2009 Baker Hughes Incorporated. All Rights Reserved.

Monitoring sites

The Magnetometer stations

- Standard 3-axes fluxgate
- Mounted on magnetically undisturbed site
- Electronics, data logger and communication equipment in nearby house
- Good short-time stability. Long term drift acceptable
- Data every few minutes are transmitted to TGO in Tromsø

Advancing Reservoir Performance

The Magnetometer stations

The locals.....

Jäckvik - Sweden

Advancing Reservoir Performance Baker Hughes Incorporated
Baker Hughes Incorporated
Baker Hughes Incorporated
Baker Hughes Incorporated All Rights Reserved.

Reference: Dønna

• Error model disturbance limits at Dønna:

iiiiiis al Donna.	2. 2	1			0.44	0.08	84	
D [deg] I [deg] F [nT] 0.45 0.18 147 3 Std dev	O Dønna	Jäckvik	ΔD (°) 0.23	Jackvik Δ (°) Δ 0.04 0.04 0.04	AF (nT) 41	5 7	Note! Absolu	ute average
 56 days recorded with data outside spec. 		Rørvik	ΔF (nT)			ar	differe	nce
	0.19	0.11	63					
					مر Fir	nland		
					Station	Geomag	netic G	eomagnetic
Solund				Skary 63.3		3	91.7	
					Dønna	63.4		95.8
0.50 0.30	182				Jäckvik	63.	5	99.5
Norway			ÅI	and	Pello	63.	6	105.4
					Rørvik	62.	2	93.2
					Columd	F 0	-	0.6.4

Advancing Reservoir Performance

Baker Hughes Incorporated

Pello

|ΔD| (°) |ΔΙ| (°) |ΔF| (nT)

Advancing Reservoir Performance Baker Hughes Incorporated

When to correct?

Correction possible: Intervall 1 and 3.

Correction not possible: Intervall 2 (requires evaluation)

Correction not required: Intervall 4

Advancing Reservoir Performance

Conclusion

✤ Hypothesis Location of the magnetometers ✤ When to correct

©2009 Baker Hughes Incorporated. All Rights Reserved