One step towards True Along Hole logging depths: proper WLL corrections

> Amsterdam ICSWSA meeting 30th October 2014 Harald Bolt Ton Loermans

Why work on depth QC??

- Depth one of the top uncertainty factors FDP's
- Sensitivity analysis Net Present Value typical FDP

Extreme case: >>> 1 million bbl per 1 ft change in GOC

Accuracy & precision needed

Fluid contacts

-A few feet difference has major impact

- Not many examples (...yet ...) about lateral error mishaps.

AH-depth and 3D position

- Limit to AH depth
- Surveying needed for 3D position
 - AH depth (often) important input
 - Plenty of problems challenges already

Current practice

• Wireline – loggers depth

-Normally (some) stretch corrections applied

- LWD logs drillers depth
 - Surface measured lengths
 - -No stretch corrections applies
 - Hence grossly in error; errors not consistent
- WLL depths (used to be) believed as being better than drillers depth
 - But LWD/drillers depth taken for lack of WL in horizontals

Drillpipe and logging cable

Drillpipe and logging cable

The WLL challenge: get a really good (accurate) measurement even with such flimsy cable..!!)

5" drillpipe

heptacable

Depth problems common

Random field example

- 25 well field
- 7 wells with serious depth problems suspected
- 4 wells resurveyed → confirmed significant problems original depths
 - *errors from -12 to +28 ft (< 10000 ft wells)*
- (suspected) errors & mismatches jumping up & down
 - one well, WLL only: 19, 29, 10, 21, 10, 30, 2 ft
 - WLL/LWD mix: similar problems
- 25 % of wells have reason to worry, / too large depth discrepancy (Saudi Aramco 2013)

Why WOrry

about depth?

Depth mishaps t r i a n g le

Cause of problems??

- Inadequate QC service companies??
 - "type 1 errors" logging depths are simply wrong, so logs have to be shifted
- Lack of audit trail/documentation leading to "type 2" error
 - Operator shifts logs, assuming they're wrong, to match existing model
- "Quest for depth" (started mid 1990's) focussed on improvements QM/QC/audit trail

QC not main problem; methods fall short

- Problems (often/mostly?) not from operational errors
 - Not much difference various regions/countries

QC not main problem; methods fall short

- Problems (often/mostly?) not from operational errors
 - Not much difference various regions/countries
 - Not much difference after QC improvement campaign
 - Stretch profile more complicated than traditionally assumed for smooth vertical wells

Improve stretch corrections

- Current stretch corrections developed for simple, smooth, vertical wells
 - Two point correction OK
- Need improved corrections (for both WLL and LWD)
 - -Newly development routines for (marked cable) WLL routines seem a major step forward

Harald Bolt (ICT Europe)

Measurehead systems

Calibrate, verify and correct

- Calibrate the cable length
- Verify cable length measurements
- Environmental corrections

- Uncertainty statements
- Audit trail

Magnetic marks => line length (measurehead interpolation between marks) Surface tension + CHT => interval line stretch Δ Line tension changes => Δ correction changes Δ tension inter-mark => Δ stretch increments

cablehead tension

Requires:

magnetic marked cable calibrated tension devices (calibrated measurehead)

Verification of depth

The difference between individual measurewheel encoder responses (per mark) are logged and compared.

Use high resolution encoders (typ. 600 ppf). Inter-mark distance will depend on tension and st. coeff. Cable IPD will be seen as a change in gain on both encoder responses.

Measurewheel verification

Measurewheel problem example

Correction basics – elastic stretch

General stretch equation

Total stretch applicable to WL correction

Stretch coefficient behaviour

As wireline design complexity increases, the complexity of the stretch coefficient increases

HUD st.coeff - example

HUD st.coeff testing

Magnetic mark defined st.coeff

Using a marked cable and a calibrated measurehead, St.Coeff and tension determines the inter-mark distance

This assumes that cable IPD has been worked out.

Way-point measurement method

Available technologies and processes

Calibrated Cable Length

- Cable calibration verification
- Thermal expansion
- Stretch Coefficient Calibration
- Stretch Coefficient Profiling
- ✓ HUD Stretch Coefficient
- ✓ Real Time Stretch Coefficient
- Straight Line Stretch Correction
- ✓ Way-Point Depth with Correction
- Way-Point Depth with Real-Time Stretch Coefficient

Simple case correction comparisons ??

ind.depth, ft Ind. – corr.depth, ft tension, lbs

Complex comparisons ??

TAH depth consortium (isn) Joint activity service companies, operators

- Main objectives: provide standards and recommended practices for TAH depth determination WLL and LWD
- Expand and hone this new WLL corrections method
 - Consider "wheels only" WLL
 - Further quantification uncertainties/errors needed
- Agree on methods for LWD stretch corrections
 - Obvious ISCWSA collaboration potential

Conclusions

- 1. WLL and LWD need better along hole depths
- 2. Proper corrections to get to real TAH (True Along Hole) depth for both LWD & WLL possible
 - New method shown for marked cable WLL
 - Better than 2 / 10000 achievable
 - TAH depth consortium can deliver all what is needed

....

6

3

00

Bouwpakket houten brandweerauto

DIY fire truck model building kit

Section/LWD Run#:	8 ¹ / ₂ "	Run#4	
Depth difference:			
before correction:	12.3m		
after correction:	0.5m		
LWD log shift:	6.1m		
Wireline log shift:	-6.7m		
Improvement:	96%	Taken from Chia,	

