

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Enhancing Wellbore Quality and Decision-Making Through the Analysis of Cross-Axial Magnetometer Bias Errors

Nico Cosca, Helmerich & Payne

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Wellbore position vs wellpath accuracy

• Which is more important?

- Implications may vary
 - Surveys for regulatory
 - Uncertainty at TD vs along lateral
 - Casing
 - Completions hardware
 - Torque & Drag
 - Drilling decisions

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

"[Wellpath quality] is about the journey, not the destination"

Enhancing Wellbore Quality and Decision-Making Through the Analysis of Cross-Axial Magnetometer Bias Errors • Nico Cosca

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

MWD Data

- 3 magnetometers and 3 accelerometers
 - Measure the magnetic and acceleration fields
 - Ultimately give us inclination & azimuth
- There will be errors!
 - Errors in sensors or in process
- What impacts will these have?

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

MWD Errors

- Most commonly discussed:
 - Declination (magnetic reference)
 - Drillstring interference (magnetic BHA components create axial bias)
 - These can "shift" the wellbore's final position
- Other errors exist:
 - Cross-axial errors (accelerometers & magnetometers)
 - Bends and sensor shifts
 - These can change the path of your well

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Cross-Axial Magnetometer Biases

- Affects one (or both) of the "radial" sensors
- Toolface-dependent effect on azimuth and QC

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Incorrect Calculations

- Azimuth values may be erratic
 - A DD chasing an azimuth can induce undesired tortuosity (and confusion)

- Motor yield calculations may be erroneous
 - Dogleg severity between surveys is incorrect

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

In Practice

- Having undetected tortuosity
 - False sense of security
 - Big surprises later
- Measuring nonexistent doglegs
 - Unnecessary corrective actions
 - Can unnecessarily create undesirable paths

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Possible Behaviors

Well plan

Pumped-up surveys (with errors)

Corrective actions from DD

Actual pumped-up surveys (errors removed)

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Positional Uncertainty Implication

SPE 63275 – toolface independence on cross-axial errors (for newer models)

EoU encloses the wellpath with bounding cone

Doesn't attempt to map shape

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Example #1

- MBX = 1780nT
- MBY = 3790nT
- Displacement from AMIL
- Oscillating shape from MBXY
- EoU implication negligible

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Example #1

- Observed DLS > 20°/100ft
- True DLS < 5°/100ft
- Unrealistic azimuth swings
- $\sim 18^{\circ}$ in 90ft

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Example #2

- MBX = 2300nT
- MBY = 1370nT

• How would this look if corrections were not performed in real-time?

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Example #2

- Corrections achieve consistency in DLS
- Shift in azimuth from DSI
 - Position
- Fluctuations from cross-axial biases
 - Path

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Example #3

- MBX = 1585nT
- MBY = 190nT
 - Asymmetrical biases
- Less DSI = less displacement
 - Statistically, same position

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Example #3

 Azimuth swings centered about the corrected azimuths

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Decision Making Impact - Recap

- Inducing doglegs by chasing an azimuth?
- Trip out because of inconsistent measurements?

• Inadvertently cross a lease line?

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

How Common is This?

Expected magnitude

(MWD+IFR1) – 70nT at 1-Sigma

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Enhancing Wellbore Quality and Decision-Making Through the Analysis of Cross-Axial Magnetometer Bias Errors • Nico Cosca

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Enhancing Wellbore Quality and Decision-Making Through the Analysis of Cross-Axial Magnetometer Bias Errors • Nico Cosca

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Causes of Cross-Axial Magnetometer Biases

- BHA design is crucial
 - Correlation between additional BHA components near the MWD and large crossaxial biases
 - Care should be taken when adding components (non-magnetic, sufficient spacing)
- Can also be hardbanding, stabilizers, UBHOs, etc...

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Mitigation

• Traditional multi-station survey corrections consider cross-axial biases

• Real-time corrections reduce the probability of poor decision making

• Corrected data can confirm driller's intuition and prevent unnecessary sliding

• Graphical diagnosis is relatively trivial with toolface analysis or linear regression

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Conclusion

• These errors are rare, but can have significant implications

• Decision making in real-time can easily be helped with cross-axial corrections

- Positional uncertainty does not concern itself with these path changes
- BHA components/drilling tools can have impacts on measurements

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Discussion! & questions