Error Model Maintenance Committee Update

Andy McGregor H&P

Speaker Bio

- Andy McGregor
- Technical Director, H&P UK.
- Inverness, Scotland
- 25 years in navigation and positioning
- 15 years in wellbore survey
- Previously with Tech21, Weatherford, AJC
- Specialised in survey management, algorithms, error modeling,

Meeting Monday 12th April - Agenda

- Rev5 Update
- Documentation Updates
- Working Group Report Handling Uncertainty in Side-tracks
- Breaking Tool-code Set Into Discrete Blocks

Revision 5 – Status

- Last meeting status changed from beta to full release.
- Changes in rev 5 were:
 - Addition course length dependant terms (XCL)
 - Changes to misalignments and sag
 - Breakout of geo-mag terms for relative uncertainty between wells
 - Defined handling of tie-on to surface

Check on Random Misalignments

- XYM3/4 misalignments are now random
- Generally significant in top hole / low inclination
- Added a check function to stop their contribution disappearing at short survey intervals.
- Recently observed that this causes problems with extremely short intervals
 - e.g. surveys ~1mm apart.
 - Landmark have removed the check function from Compass
- Needs further evaluation.

Rev5 Website Documentation Update

- Documented on ISCWSA website:
 - https://www.iscwsa.net/error-model-documentation/
- Added spreadsheets defining ISCWSA Set of Generic Tool-codes
 - i.e. 'OWSG Models'
 - Set A and Set B
 - Numbered Rev5-1
 - "MWD" now "MWD+SRGM"
- Document defining the categories of geomagnetic model
 - LRGM, SRGM, HRGM
 - Update frequency, harmonic degrees of the model
- No diagnostics files yet

Standard Models – Set E

These were Experimental Models, proposed for inclusion:

MWD+HRGM+MS – to be included

A number of Dual Inclination models - not suitable for generic set.

- should be service provider models

Un-surveyed Assumed Vertical Models – not suitable for generic set

- very field/drilling equipment dependant.
- blind drilling should be default generic model
- any local assumed vertical model best validated against surveyed wells in that field.

Documentation- Archive Technical Documents

OWSG Rev2 Model definitions and diagnostics

A series of technical notes written by Steve Grindrod:

Notes on implementation of test profiles

Notes on toolface independent terms and models.

Notes on depth model changes

Additional MWD models (pre-OWSG, MWD+IFR etc.)

Presentations from Stefan Maus deriving the LRGM and HRGM magnitudes.

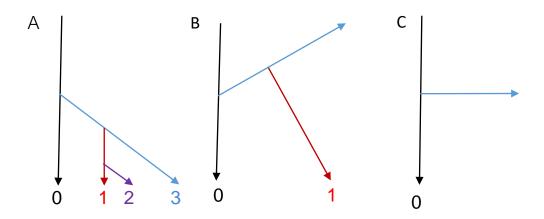
Derivation of the Singular X-axis Accel terms from Chad Hanak.

https://www.iscwsa.net/error-model-additional-documentation/

Open Source Error Model Implementation

- Welleng Python Library by Jonny Corcutt
- https://pypi.org/project/welleng/
- Calculate well bore uncertainty data (utilizing either the <u>ISCWSA</u> MWD Rev4 or Rev5 models) –"the coded error models are within 0.001% accuracy of the ISCWSA test data."
- Calculate well bore clearance and Separation Factors (SF)
 - standard <u>ISCWSA</u> method within 0.5% accuracy of the ISCWSA test data.
 - new mesh based method using the Flexible Collision Library.
- May be of interest, but not checked or endorsed by the committee

Handling of Errors in Side-tracks


- Collision avoidance test set includes a side-track well.
- Inconsistency in handling errors for that well.
- Setup a working group to recommend best practice.
- Has met three times since last ISCWSA.

- Work on-going
- Will produced recommendation document & test-cases

Conceputal Test Cases

Differing geometries
Permutations of reference
and offset
Varying survey program
MWD + gyros

Scan	1	2	3	4	5	6	7	8	9	10
Reference	A1	A2	A2	A3	A3	A3	B1	B2	B2	C1
Offset	Α0	A0	A1	A0	A1	A2	В0	В0	B1	CO

Calculation of Relative Uncertainty

- Existing method of calculating relative uncertainty will apply.
- Correct method is described in SPE 67616 and the Error Model Definitions document
 - Add covariance matrices
 - Subtract product of error vectors of the globally propagating sources.
- Simple RSSing of pedal curve radii does not manage global terms correctly

Calculation of Relative Uncertainty

- Erik Nyrnes and Jon Bang presented the Matrix method
 - an alternative to the error summation formulation in SPF 67616
- Both implementations handle Global terms correctly, and give the same results
- Will be documented and added to definition document as alternative.
- It was agreed that there is nothing specific to side-tracks that will not be handled properly by the current mathematics

MD terms: Propagation

ISCWSA rev 5 terms:

		Propagation			
Error Source		Mode	Units	Fixed	Floating
Depth: Depth Reference – Random	DREF	R	m		2.2
Depth: Depth Reference – Systematic	DREF	S	m	0.35	1
Depth: Depth Scale Factor – Systematic	DSF	S	-	0.00056	0.00056
Depth: Depth Stretch – Global	DST	G	1/m	2.5E-07	2.5E-07

- Re-considered propagation modes for depth terms.
- Applying to both drill-pipe & wireline
- For relative uncertainty main consideration is which have global propagation

Propagation: Term by Term Evaluation

- Reference DREF(S) and DREF(R)
 - Fit for purpose.
- Scale Factor DSF(S)
 - Systematic might not be correct in all scenarios
 - Is conservative, hence best option.
 - Applies to both drill-pipe and wireline and also drill-pipe // wireline comparisons.

Propagation: Term by Term Evaluation

Stretch - DST

Drill-pipe: global propagation justified.

Wireline:

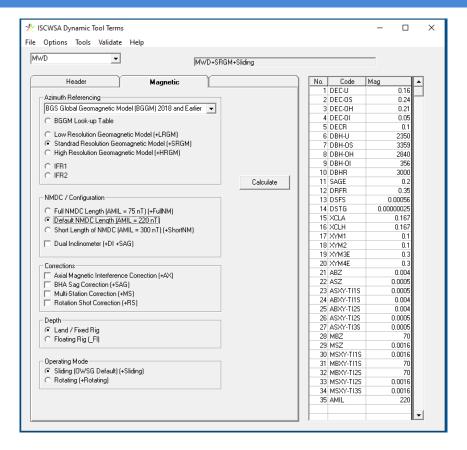
Inappropriate for wireline tools to use current DST term.

Errors not correlated with drillpipe stretch

Recommend new wireline DST term

With systematic propagation – DSTW-S

Breaking Models Down into Component Parts


- > 100 models in generic set.
- Many are permutations of magnetic tool options
 - MWD/EMS, Geomagnetic reference, axial/multi-station corrections, sagetc.
- Would be easier to manage if published as 'building blocks'
- Greater flexibility and would allow more options-
 - E.g. drillstring interference models

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Breaking Models Down into Component Parts

- Website publishing or software generating models on the fly
- Need clear information for users what to do all the acronyms mean.
- Put axial interference magnitude in short name
- How best to exchange models
- Use of reference number
- Application to gyro models
- Handling dynamically varying magnitudes (geomag / axial)
- Formed a working group

Wellbore Survey Accuracy (ISCWSA)

Questions

