

Quantitative Analysis of Geological Data Uncertainty to Increase Positional Confidence

Nico Cosca, Marc Willerth, Brian McManus, Alec Berarducci Helmerich & Payne

53rd General Meeting 14 & 15 of April 2021 Virtual Conference

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Depth and Vertical Errors

- Pipe stretch
- Thermal expansion
- Pipe tally
- Surface surveying
- BHA sag
- Accelerometer errors
- Survey aliasing

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Previous Work

- · Geological data has been used to aid in positioning
- Usually qualitative
- Quantitative data could be implemented in the error model!
- Several applications could be considered (target sizing, SAGD, CA...)

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Formation Top Detection

- Algorithmic approach to pattern recognition
- Option for human interpretation
- Traditionally used for
 - Earlier target changes
 - Reduce the need for corrective doglegs

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Formation Top Detection

- Use of a "forward model" using empirical data to TVD correct a reference log
- Gamma is automatically correlated

- Notifications when a marker is crossed
- Is this accurate and repeatable?

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Driving to Grand Junction Office

- If I leave from the office, how far?
- If I leave from my house, how far?
- If I leave from Glasgow, how far?
- Once I reach this marker...
 - 11.1 miles

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

In Practice

- Data from 4 pads in North Dakota, USA
- 8 wells crossing same formations
- Compared to independent model
- Consistency in measurements
 - Relative error is crucial

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Outliers

Gross error detection

- Land surveying
- RKB measurements
- Pipe tally
- •

Formation Tops and Layer Models

Repeatability

- Consistent slopes between layers
- Agreement with linear models
 - $\sigma_1 = 1.016 \text{ ft}$
 - $\sigma_2 = 1.467 \text{ ft}$
 - $\sigma_3 = 0.212 \text{ ft}$

Formation Tops and Layer Models

Top Detection

- Using a single well
- Suggests depths to consider switching error terms
- Assumed to be depthindependent

Comparison of Variances from Surveys and Geologic Models Using a "Flat" Model

Quantitative Analysis of Geological Data Uncertainty to Increase Positional Confidence • Nico Cosca

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Top Detection

- With higher resolution data
- Suggests very low
 error
- Almost immediate
 error reduction

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Potential Ways to Fit Into the Error Model

- Option 1: Combined Uncertainty
 - Geologic variance considered to be constant
 - Survey variance for ISCWSA test well 1 is known
 - Combination of independent measurements
- Option 2: Use vertical uncertainty from the geologic tie-on
 - Collapse vertical dimension
- Uncertainty remains relative and not absolute

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Error Comparison

ISCWSA Test #1 Survey Vertical Axis Standard Deviations

Geologic Formation Vertical Axis Standard Deviations:

MD (m)	Survey σ (m)	Average Formation	Geologic Vertical
450	0.4343	Depth (m)	Survey σ (m)
1020	0.7186	2458	0.0648
2010	1.6741	2462	0.3097
3000	4.3375	2467	0.4471
4020	7,4460		

*MWD+HRGM

Quantitative Analysis of Geological Data Uncertainty to Increase Positional Confidence • Nico Cosca

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Error Reduction – Combined Surveys

- Precedent in application (SPE-178826, Ledroz, et al., 2016)
- Reduction in error using a weighted average method

- Implementation into the error model
 - Has been done previously
 - This would be depth-dependent

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Error Reduction – Geologic Tie-On

- Once the marker is reached, vertical uncertainty can be "reset"
 - Like resetting error propagation
- "Collapsing" the vertical error terms
- "No-Error" with surface uncertainty?

Recap

- Algorithmic, repeatable approach to geologic marker recognition
- Significant error reduction at depth
- Potential applications
 - Target sizing, relative distance drilling (e.g. SAGD), collision avoidance, etc...
- Currently does not fit in the traditional Error Model framework

Wellbore Positioning Technical Section

The Industry Steering Committee on Wellbore Survey Accuracy (ISCWSA)

Thank You

Questions

Quantitative Analysis of Geological Data Uncertainty to Increase Positional Confidence • Nico Cosca