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Speaker Bio
• Manoj Nair

• Research scientist and Operational science-lead 
• University of Colorado and 

US National Oceanic and Atmospheric Administration
• 17+ years research experience in geomagnetism
• PhD in Geophysics
• Boulder, CO
• Specialized in 

• Geomagnetism
• Signal-processing, research-to-operations

• Machine-learning
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• Conducts original research on geomagnetism 
• Develops and distributes magnetic reference models 

(HDGM, WMM, IGRF)
• Real-time modeling of magnetic disturbance field
• Magnetic survey data repository (GEODAS)
• CrowdMag citizen-science project

https://geomag.colorado.edu/ 
https://www.ngdc.noaa.gov/geomag/

Geomagnetism group of
University of Colorado and 
US National Oceanic and Atmospheric Administration
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Roadmap

• Disturbance-storm-time (Dst) index: 
what and why

• Solar-wind based forecast of Dst

• Machine-Learning and artificial neural
networks

• Modeling of Dst

• Results and conclusion
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Disturbance-storm-time (Dst) index
A measure of magnetic disturbance

• Solar-wind interaction with Earth’s 
magnetic field generate electric 
currents

• Dst index is a measure of ”ring-
currents” in the magnetosphere

• Hourly Dst index is calculated using 
four geomagnetic observatories

• Different flavors: Kyoto Dst, USGS 
Dst, Rc index
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• Ring-current is one of the major 
current systems in the 
magnetosphere

• Critical input to magnetospheric
specification models

• Operational Dst forecast provides 
early warning 

• Augment NOAA/CIRES real-time 
magnetic disturbance modeling

Why to predict Dst ?
Important space-weather specification
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Forecasting of Dst using solar-wind data

• Solar-wind forecasting
• Less-accurate
• Lead-time 
• Observatory data not needed

• Empirical relationship

• Burton et al (1975),  Temerin and Li 
(2002), O’Brien and McPherron (2000) 

• Physics-based models

• University of Michigan’s Geospace
model 

• Machine-learning approach

Temerin and Li (2002) – LASP model

LASP Dst 
prediction
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• An “AI”, or Artificial Intelligence is an 
intelligent code/machine made by 
human.

• AI performs cognitive functions such as 
learning, problem solving, Planning.

• AI progression
• Artificial Weak Intelligence

• Artificial General Intelligence

• Strong AI

• Practical applications are limited to Weak-AI

• Machine-Learning
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Artificial Intelligence

Source: https://vincentlauzon.com/2015/09/16/strong-ai-existential-risks/
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● Mimics the function of brain
● Weights and transfer function
● Unversal non-linear approximator 
● Back-propagation training
● Supervised learning 
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Machine-Learning
Deep Neural Networks

Artificial Neural Networks Recurrent Neural Networks
● A variation of ANN
● For predicting temporal (sequential) information
● Squence-to-sequence processing

● Bring your own software
● Tensorflow (Google)
● PyTorch (Facebook)

ML frameworks
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• Observerved Dst values (Kyoto 
WDC)

• Observed solar-wind data 
(NASA-OMNI)

• 1997-2016 (175,200 hourly 
values)

• Divided into training and testing 
segments

• Normalized 
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Data used for machine-learning
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Training the model

• Aim: one-step (hour) ahead forecast of Dst using 
current and historical solar-wind data

• Optimizing hyperparameters

• Minimizing the loss-function versus generalizing the 
model

• CPU versus GPU

• Final weights and biases saved for production.
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Results
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One-step ahead forecasting of Dst for 2003



Industry Steering Committee on
Wellbore Survey Accuracy

Wellbore Positioning Technical Section

48th General Meeting
Sept 27th, 2018
Dallas, USA

Benchmarking ML prediction 

• Compared ML model against 
LASP model using test data.

• ML and LASP predictions are 
very similar 

• Extreme geomagnetic storm of 
Nov-2003 is better predicted by 
ML

• Further improvement to prediction 
is achieved by ingesting past Dst
data 
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Real-time prediction service
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Will be available at https://geomag.colorado.edu

• We use the trained ML 
model to predict Dst in real-
time

• Satellite only
• Satellite + past Dst

• Uses NOAA’s DSCOVR 
satellite data

• Operational upstream 
solar-wind measurements

• 1-hour advance prediction 
of Dst

• Real-time validation against 
observed data
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Conclusion

• Machine-learning (ML) is a powerful tool to develop predictive models

• Disturbance-storm-time (Dst) index is an important specification of 
magnetic disturbance

• Using historical Dst and satellite data, we developed a ML model to 
forecast Dst data

• Our predictions compare favorably with observed data 

• Potential for modeling other electric-current systems in the space.
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