Interactive Well Path Planning with Integrated Geoscience and Cultural Data

 Geoffrey A. Dorn* and Joseph P. Dominguez (* Speaker)

49^m Ganaral Maating March 3rd, 2019 Den Hague, The Netherlands

Speaker Bio

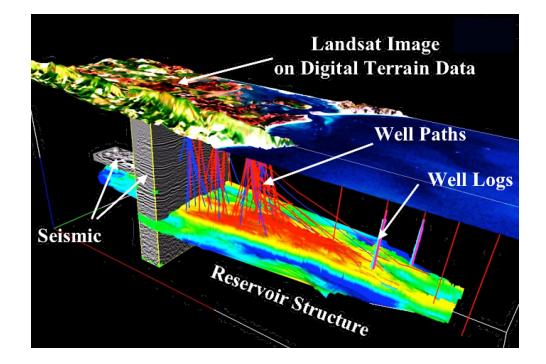
- Introduction
 - <u>Employer</u>: CGG GeoSoftware
 - **Experience:** ARCO, Univ. of Colorado, TerraSpark GeoSciences, CGG GeoSoftware
 - <u>Education</u>: PhD in Eng. Geoscience, UC Berkeley
 - Location: Denver, Colorado, USA
 - Focus:Seismic Interpretation, 3D VisualizationIntegrated Geoscience & Well Path Planning

•



3D Integration and Visualization of:

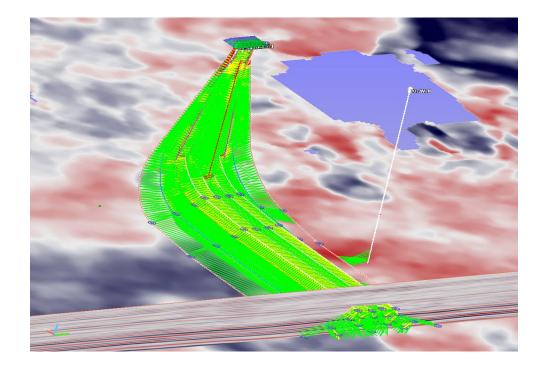
- G&G Data
- Existing Wells
 - Paths, Logs, Tops
- Planned Wells



3D Integration and Visualization of:

- G&G Data
- Cultural Data
- Existing Wells
 - Paths, Logs. Tops
- Well Path Planning
 - Conventionals

(2005 BP Center, Univ. of Colorado, Boulder)


49th General Meeting March 3rd, 2019 Den Hague, The Netherlar

3D Integration and Visualization of:

- G&G Data
- Cultural Data
- Existing Wells
 - Paths, Logs, Tops
- Well Path Planning
 - Conventionals
 - Unconventionals (2018 CGG)

49th General Meeting March 3rd, 2019 Den Hague, The Netherlands

Why do we need need software that integrates Well Path Planning with all available data?

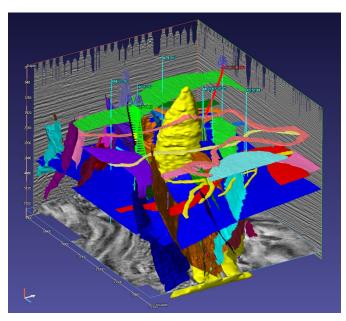
Not a good outcome

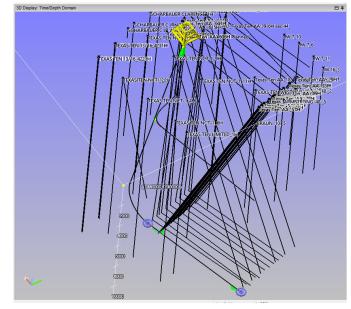
49th General Meeting March 3rd, 2019 Den Hague, The Neiherlands

REALLY Not a good outcome

The Exploration and Development Goal

 Whether you are a Drilling Engineer, Well Planner, Geophysicist, Geologist, Well Log Analyst, etc., the goal is to <u>find, develop and</u> produce reserves as efficiently, effectively and safely as possible.


 This can be most effectively accomplished by having all of the spatially referenced data properly registered and displayed in one place.


InsightEarth WellPath is a step down this path.

49th General Meeting March 3rd, 2019 Den Hague, The Netherlands

Well Path Planning in 3D

A: Geology is 3D

B: Wells are 3D

You need A and B together to Plan in 3D

49^m General Meeting March 3rd, 2019 Den Hague, The Netherlands

Planning in 3D

Early Experience using Geophysics to support 3D Well Path Planning

- "Deep geothermal exploration in New Mexico using electrical resistivity" (Proceedings of the Second United Nations Symposium on the Development and Use of Geothermal Resources, 1975)
 - Well Path #1: Drill into the hot-dry rock of a KGRA in New Mexico
 - **Create Fracture(s)**: Frac the hot-dry rock
 - **Geophysics:** Use electrical resistivity measurements to determine the orientation/location of the fracture
 - Well Path #2: Intersect the Fracture with a second borehole to allow circulation of injected water.

49th General Meeting March 3rd, 2019 Den Hague, The Netherlands

Permian Basin Examples

- Shallow Drilling Hazards
- Water Source or Water Problem
- Planning in Mature Drilled areas
- Optimize Path and Completion Plans for Natural Fracture Swarms
- Plan for Multiple Stacked Reservoir Zones

Permian: Shallow Drilling Hazards

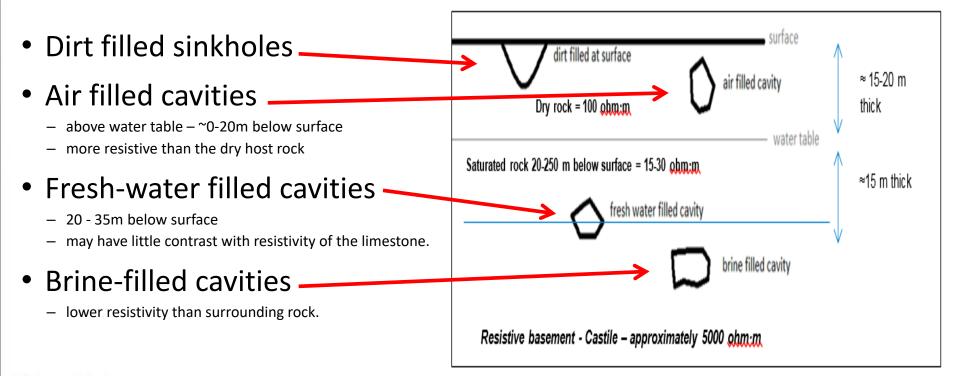
Mapping near-surface karsts:

- Affects pad placement, well placement and well path
- Ignoring this results in bit drops, equipment loss, pad loss, environmental impact ...

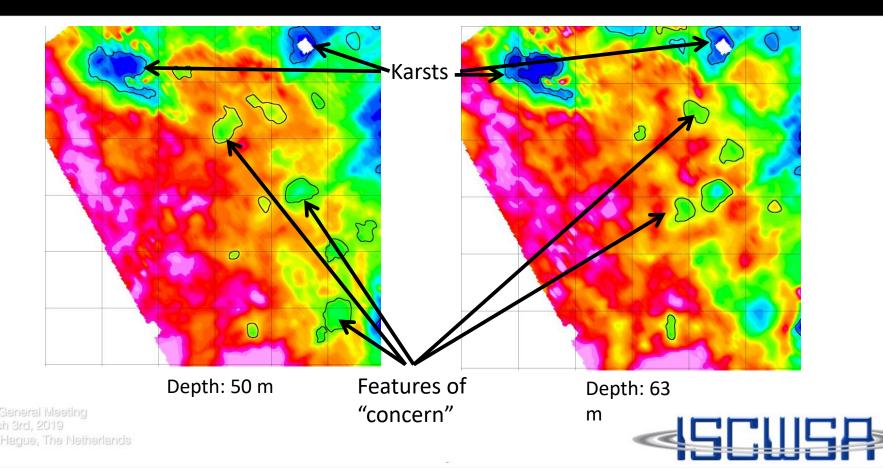
49th General Meeting March 3rd, 2019 Den Hague, The Netherlands

Permian: Water Source or Water Problem

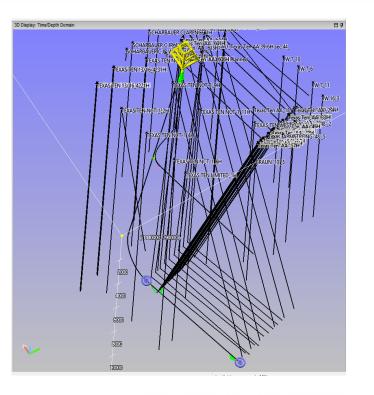
Understanding the water table:


- Identify potential sources of drilling water
- Help avoid near surface geology anomalies that might impact drilling
 - Dissolution/collapse features (e.g., karsts)
 - Mapping of velocity inversions
 - Improved statics in problem areas

49th General Meeting March 3rd, 2019 Den Hague, The Netherlands


Examples of EM Responses

49th General Meeting March 3rd, 2019 Den Hague, The Netherlands



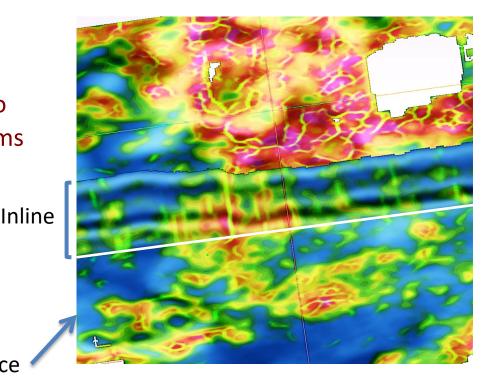
Permian: Airborne EM Data Showing Possible Karsts

Permian: Planning in Mature Drilled Areas

- The mature basin is a "pincushion" of legacy wells.
- Planning in the presence of legacy wells requires flexible anticollision and uncertainty capabilities:
 - Between Planned Wells and Existing Wells
 - A Variety of uncertainty models (conservative – liberal)
 - Methods to evaluate options

<<u>50</u>Ш5₽>>

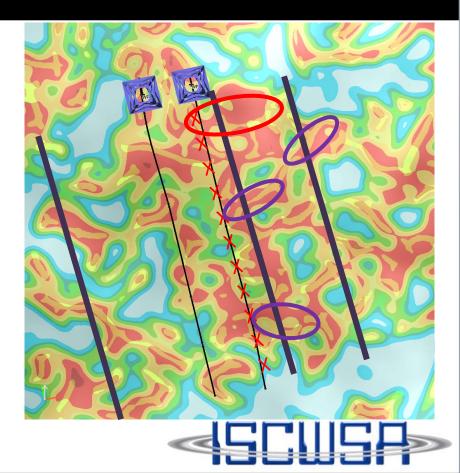
49^m General Meeting March 3rd, 2019 Den Hague, The Netherlands


Permian: Optimize Path for Natural Fracture Swarms

Understanding the Effects of Fracture Swarms:

- Co-render four seismic attributes to understand communication problems
- In Increasing resolution:
 Seismic Amplitudes
 - •Fault Enhanced Volume
 - •Discrete Fracture Network
 - •Fracture Density

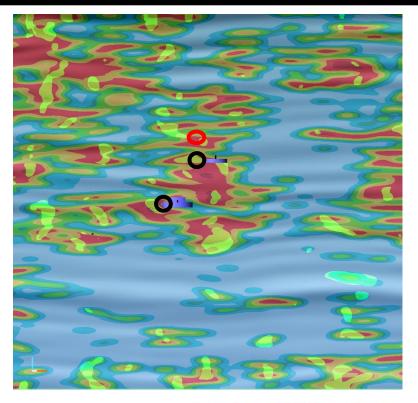
Time/Depth Slice



Permian: Change Completion Strategy

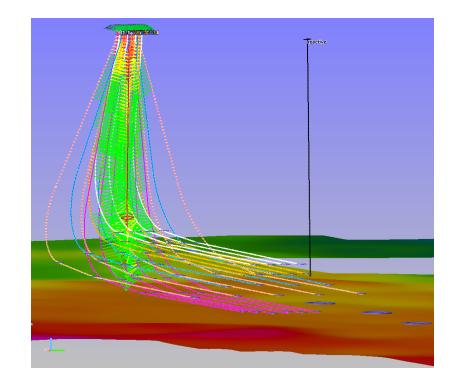
Change Completion Strategy Based on Natural Fracture Density

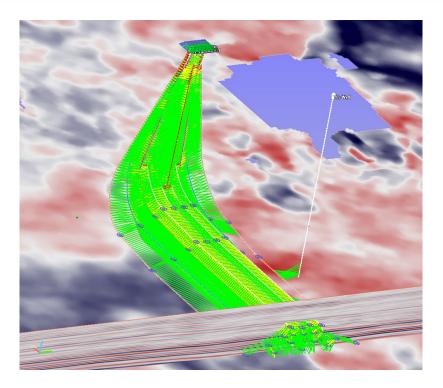
- Original Planned Laterals _____
- Recommended lateral placement
- Skip this stage
- Smaller Fracture Stimulation


49th General Meeting March 3rd, 2019 Den Hague, The Netherlands

Permian: Change Completion Strategy

Change Completion Strategy Based on Natural Fracture Density


- Avoid connected high fracture density
- Increase vertical spacing 200-300 ft



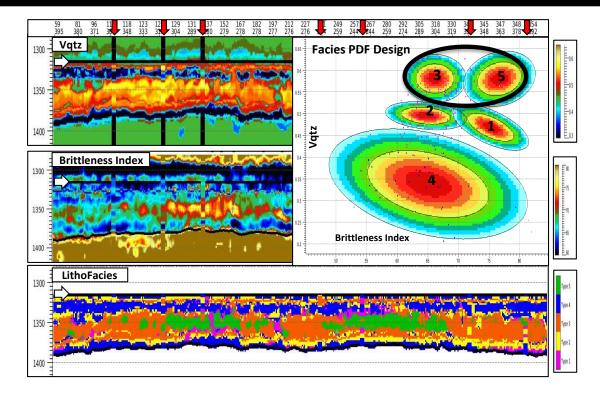
49^m General Meeting March 3rd, 2019 Den Hague, The Netherlands

Plan for Multiple Stacked Reservoir Zones

49th General Meeting March 3rd, 2019 Den Hague, The Neiherland

- Optimize Path for Best Reservoir Facies and Fracture Swarms
- Optimize Path for Best Zone in an Interval

49º General Maeting March 3rd, 2019 Den Hague, The Netherlands

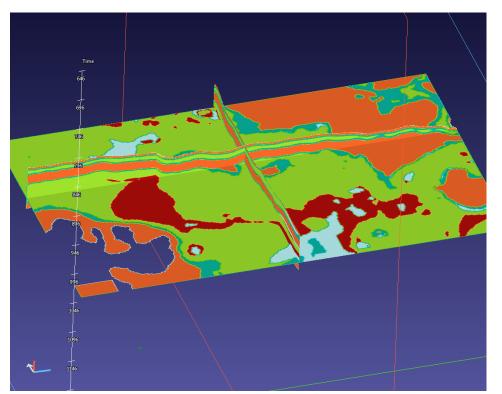


Barnett: Optimize for Best Facies/Rock Properties

- High Vqtz and Brittleness are desirable.
- Clay-rich rock inhibits fractures at the base of the formation.
- Facies 3 and 5 correlate to best production.

From Pendrel

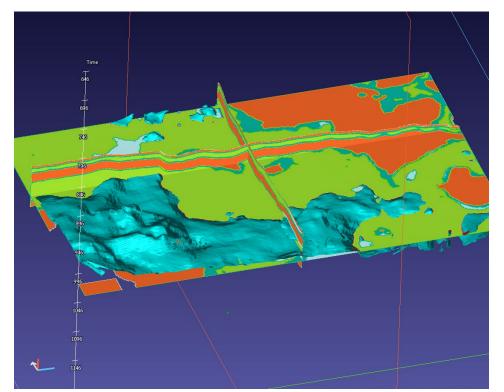
49°° General Meeting March 3rd, 2019 Den Hague, The Neiherlands



Barnett: Best Facies Volume in Well Path Planner

Imported Facies volume defined by seismic inversion/rock properties model

- Facies Type 5 (red)
 - Good reservoir quality
 - High brittleness
 - Good kerogen content

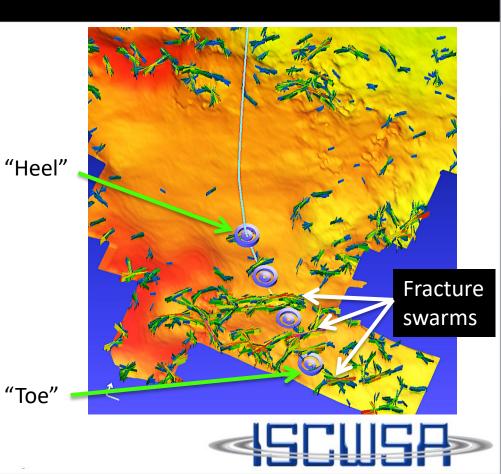


49° General Meeting March 3rd, 2019 Den Hague, The Netherlands

Barnett: Best Facies Volume in Well Path Planner

Extracted 3D boundary of best Facies

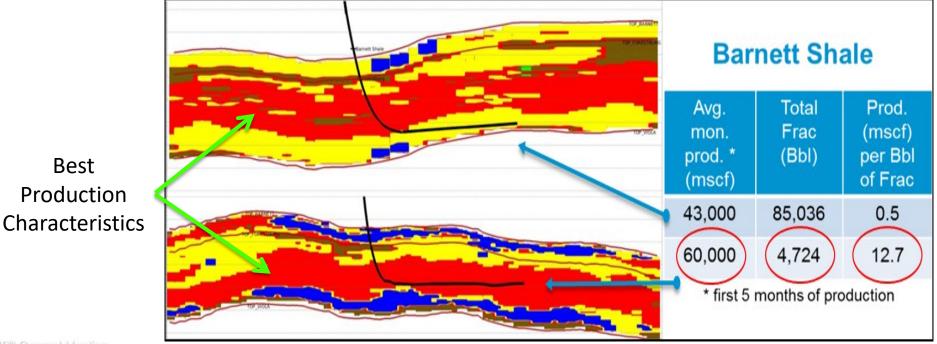
- Facies Type 5 (red)
 - Good reservoir quality
 - High brittleness
 - Good kerogen content



49° General Meeting March 3rd, 2019 Den Hague, The Netherlands

Barnett: Well Path planned on Best Facies & Fractures

Well Path Plan


- Land path in Barnett 200 ft below top of best Reservoir Facies geobody
- Traverse perpendicular to multiple fracture sets within best facies geobody
- Stays inside Best Reservoir Facies Geobody for entire length of lateral

49th General Meeting March 3rd, 2019 Den Hague, The Netherlands

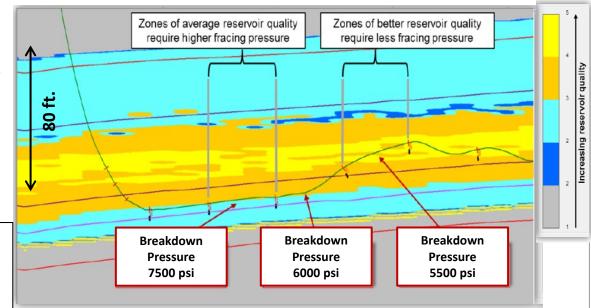
Barnett: Optimize for Best Zone in an Interval

Minimize Cost and Maximize Return

Best

Production

Barnett: Best Production Characteristics


Detailed models

- Image heterogeneity
- Compartments in turbidites
- Geomechanics
- Assess uncertainty
- Accurately estimate reserves

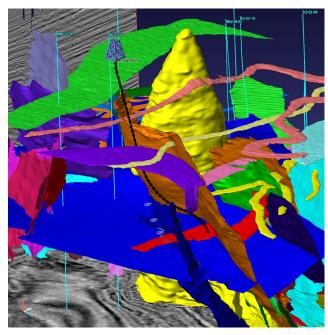
Business value

- High ROI
- Optimizing well planning program

Breakdown Pressure Summary

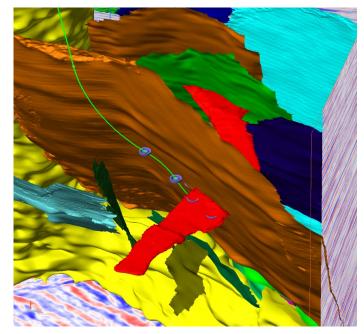
Use of facies could have improved well path design.

49ⁱⁿ General Meeting March 3rd, 2019 Den Hague, The Netherlands


Gulf of Mexico

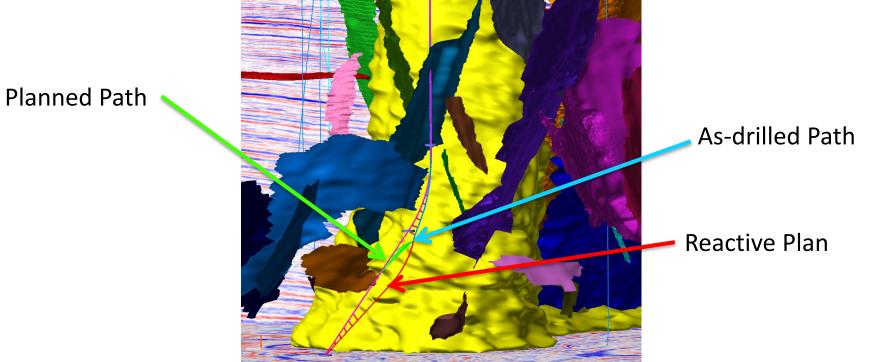
Optimized path to fault high-side channel Optimized path to 3D salt body trap & reactive well plan

49th General Meeting March 3rd, 2019 Den Hague, The Netherlands



Planned Optimum Path to a Faulted Channel

Planned Path


49^m General Meeting March 3rd, 2019 Den Hague, The Netherlands

Close-up Planned Path

Planned Optimum Path to 3D Salt Trap

Benefits from Integration

- Safety
- Efficiency
 - The right well designs in the right place
 - Planning entire pad of wells at once
 - Plan and drill the potentially most productive wells first; fill in the the rest later after you have established cash flow
 - Save costs of unnecessary wells
 - Save costs by not drill a well if productive facies is not present
 - Avoid drilling or fracing wells in such a way that they interfere with each other.
 - Plan wells to maximize exposure to productive facies
 - Deliver plans that are drillable
- Accuracy and precision
- Design and adjust well paths efficiently with integrated Geoscience information supporting the design changes

March 3rd, 2019 Den Hague, The Netherlands

InsightEarth WellPath

We are developing the tools to support Interactive Wellpath planning with integrated geoscience data:

- Data Import, Export and Display
 - Cultural Data (Topography, Bathymetry, Lease Boundaries, Satellite, ...)
 - Geophysical and Geological Data
 - Seismic, Gravity, EM, ...
 - Interpretations (horizons, faults, geobodies, Geohazards, fracture density,...)
 - Earth models, inversion volumes, ...
 - Data Links/DataTransfer with major seismic intepretation systems
 - Existing Wells (Top hole locations, Well paths, Well logs and analyses, Formation Tops, ...)

49th General Meeting March 3rd, 2019 Den Hague, The Netherlands

InsightEarth WellPath

• Well Path Planning:

- Interactive Well Path Planning for Conventionals and Unconventionals
- Targets, Target Sets Interactive definition and editing
- Anticollision and Uncertainty
- Full range of curve types
- Platform/Pad design
- Sidetracks (incl. millout points, reachability cone)
- Constraints
 - Surface location and surface use constraints including lease offset
 - Formation well separation constraints
 - Design constraints (including dogleg severity, torque and drag)
 - Relative cost and complexity

49° General Meeting March 3rd, 2019 Den Hague, The Neiherlands

InsightEarth WellPath

- Visualization:
 - 3-D Visualization of all Cultural, Geophysical, Geological, Well Data (Existing and planned wells, well logs, etc.)
 - 3-D Visualization of well paths, anti-collision and uncertainty (existing and planned wells)
 - Direct 3D interaction with pads, targets, well plans, ...
- Seismic Interpretation (Optional)
 - Full capability to udate interpretation based on information obtained from drilling

49th General Meeting March 3rd, 2019 Den Hague, The Netherlands

