Shale Gas; Wellbore Positioning Challenges

Pete Clark, Directional Drilling Advisor
ISCWSA, Copenhagen, 3/4/11
Shale Gas;
Wellbore Positioning Challenges

- Why is it important to us?
 - Emerging trend in drilling industry
 - Several familiar challenges in a new environment
 - Several unique challenges
Content

Market Place
Current Well Designs & Practices
Multi-well Pads
Collision Avoidance
Drilling the Horizontal
Well Spacing
Microseismic, Well Spacing and Frac Monitoring
Future well designs
Conclusions
Market Place

- **Shale Gas**
 - 1821 shale gas well, Fredonia, NY predates Drake oil well by 38 years
 - Extensive basins US land
 - Over 100 rigs currently drilling in Marcellus shale
 - Significant drilling market share with smaller DD / MWD service providers

- **Shale Oil**
 - International
 - Considered “unconventional”
 - Emerging energy source
Market

- **Shale Gas (USA)**
 - 1996, 1.6% of US gas production
 - 2006, 5.9% of US gas production
 - 2007, 4185 shale gas wells drilled
 - Trends continuing upward

- **Shale Gas (international)**
 - November 2009 agreement between USA & China to share shale gas technology
 - November 2010 agreement between USA & India to share shale gas technology
 - Austria, Germany, Hungary, Poland assessing shale gas potential
Current Well Design & Practices

- Drill vertically, build at medium radius then drill horizontal
- Hydraulically fracture rock to release gas
- Trend towards multi-well pads
- Parallel horizontal wellbores aligned with stress orientations
- Horizontal length may be determined by lease boundaries
Typical shale gas well development

- Plan view
Typical shale gas well development

- Plan view showing positional uncertainty
Typical shale gas well development

- Plan view showing positional uncertainty
- Horizontally opposed wells may facilitate shorter development timeline
Typical shale gas well development

- Plan view showing positional uncertainty
- Horizontally opposed wells may facilitate shorter development timeline
- Frac’s indicated by orange bars
Frac

- Frac growth measured by microseismic
- Timing; investment, return on investment & scheduling
Frac

- **Vertical’s**
 - Pre-development & frac “parasites”
 - Collision risk management (max. risk, min. likelihood)
Multi-well pads

- Multi-well pads – environmental impact & cost
- Parallel wells in reservoir
 - Constant separation at optimal orientation (100’s of ft based on frac propagation)
 - 3D well designs achieving separation from surface
 - Opposing pads
- “Air rig” drilling vertical portion
 - Multiple rigs on single well; depth offset
 - Generally run with inclination only surveys or single shots
- Surface positional uncertainty
 - Correct use for neighboring slots and opposing pattern
- Batch drilling
 - Potential for drilling next to live gas wells
- Best practice – manage slot to target allocation
- Best practice – implement well bore surveying & positional uncertainty standards
- Best practice – implement collision avoidance planning and monitoring standards
Collision Avoidance

- **Cultural issue**
 - Shale gas drilling currently US land centric
 - US land market generalized by solo wells in relatively low pressure reservoirs

- **Risk**
 - Flowing gas wells accessing fractured reservoir
 - Intersection followed by lost circulation and kick

- **Standards & interpretation**
 - Calculation should be run consistently
 - Calculation should be easy to interpret
 - Simplified workflow for well construction production line
 - Visual rather than numerical answers
 - Real time, at site
Drilling the Horizontal

- Omni-directional gamma steering / sonic for “Frac” index
- Bent motor or VGS causing “slide / rotate” patterns
 - Especially horizontal, curve tends to be high percentage steering
- Steering relative to geologic type log
- Success requires management of interface between directional driller & operations geologist
Well spacing

- Assumption; mis-application of Total Azimuth Correction (TAC) is one of the most common well-placement gross errors
- Assumption; constant separation distance and navigating for reservoir “sweet spot” (tvd)
- Risk; mis-application of TAC leading to well intersection
- Powered PDC not sensitive to intersection angle
Well spacing

- Lateral uncertainty
 - Determinant of horizontal length
 - Determinant of frac efficiency
 - Potential to meet specification without meeting objective
Well spacing

- Well design variables
 - Horizontal length, well separation, lateral uncertainty
- Well separation based on optimal placement / frac. efficiency
- Survey accuracy / lateral uncertainty likely to cause frac.-less volumes
- Systematic errors between wells should / could be excluded in calc.
- Horizontal length determinants
 - Lease boundary, drilling capability, production capacity
- Knowing wells are not ideally separated do we drill past the conventional acceptable collision risk rule while ranging to manage risk of intersection?

Allowable incidence angle

- 16.7° 30ft
- 2° 30ft
- 100ft
- 859ft

Allowable projection from MWD
Lease Efficiency

- **Hardlines and boundaries**
 - Hardline may be based on nominal or planned positional uncertainty
 - Shape of lease
- **Proximity to plane & plan**
- **Impact of survey program on recoverable reserves**

![Diagram showing actual wellpath with positional uncertainty and planned wellpath with positional uncertainty, compared to the lease boundary and no-go hardline.](image-url)
Microseismic Well Spacing & Frac Monitoring

- Real time frac. monitoring
- Frac positioning modeling partly dependent on positional uncertainty of monitoring well
- Geophones on surface and / or in monitor well
 - Due to high frequency (~100-150Hz), 2000 – 2500 ft max spacing from monitor to treating well
- May need to plan monitor wells in order to optimize well spacing / frac program / horizontal length
 - Well design / development plan issue
 - Potential collision risk
...and beyond

- Intended intersections with geometric challenges

Single pump-jack
Multiple wells

Multi-well pad site

Liquid
Gas
Conclusions

- Risk – collision
 - Gross error
 - System failure
 - Exempt offset & manage risk with ranging

- Positional uncertainty
 - Robust application of surface uncertainty
 - Clearance calculations should already take global systematic errors into account. Parallel wells need a similar approach to target analysis

- 3D well designs / collision avoidance in high volume environment
 - Take current best practice and refine workflow for efficiency – visual answers
 - Remote specialists aiding rigsite operations; knowledge management
 - Assess lease efficiency

- Technology & tools easy to transferred. Experience, less easy

- It’s the well you don’t know about that’s likely to be the problem.